
AppDaemon Documentation
Release 4.0.7

Andrew Cockburn

Mar 28, 2021

Contents

1 Installation 3

2 Configuration 9

3 Example Apps 25

4 AppDaemon Tutorial for HASS Users 27

5 AppDaemon with Docker 31

6 Writing AppDaemon Apps 37

7 Community Tutorials 83

8 AppDaemon API Reference 85

9 HASS API Reference 127

10 MQTT API Reference 135

11 Dashboard Install and Configuration 141

12 Dashboard Creation 145

13 HADashboard Widget Development 199

14 Development 219

15 Internal Documentation 223

16 Upgrading from 3.x 227

17 Upgrading from 2.x 229

18 Change Log 233

19 Index 265

Python Module Index 273

i

Index 275

ii

AppDaemon Documentation, Release 4.0.7

AppDaemon is a loosely coupled, multi-threaded, sandboxed python execution environment for writing automation
apps for home automation projects, and any environment that requires a robust event driven architecture.

Out of the box, AppDaemon has support for the following automation products:

• Home Assistant home automation software.

• MQTT event broker.

AppDaemon also provides a configurable dashboard (HADashboard) suitable for wall mounted tablets.

AppDaemon is developed and maintained by a small team of hard working folks:

• Andrew Cockburn - AppDaemon founder, Chief Architect and Benevolent Dictator For Life.

• Odianosen Ejale - Core & MQTT Development and maintenance, fixer and tester.

• Humberto Rodríguez Avila - Document Meister and Code Groomer

• Daniel Lashua - Core Developer & JS/CSS/HTML expert and the one that drives them all crazy.

With thanks to previous members of the team:

• Rene Tode

• Robert Pitera

Contents:

Contents 1

https://home-assistant.io/
http://mqtt.org/
https://github.com/acockburn
https://github.com/Odianosen25
https://github.com/rhumbertgz
https://github.com/dlashua

AppDaemon Documentation, Release 4.0.7

2 Contents

CHAPTER 1

Installation

Installation is either by pip3 or Docker. There is also an official hass.io build.

Note: Windows and Raspbian users should check the environment-specific section at the end of this doc for additional
information.

1.1 Install and Run using Docker

Follow the instructions in the Docker Tutorial

1.2 Install Using pip3

Before running AppDaemon you will need to install the package:

$ sudo pip3 install appdaemon

Do not install this in the same Python virtual environment as Home Assistant. If you do that, then Home Assistant
will stop working.

1.3 Install Using hass.io

The official hass.io addon for AppDaemon is maintained by:

• frenck.

3

DOCKER_TUTORIAL.html
https://github.com/hassio-addons/repository

AppDaemon Documentation, Release 4.0.7

1.4 Running

1.4.1 Docker

Assuming you have set the config up as described in the tutorial for Docker, you should see the logs output as follows:

$ docker logs appdaemon
2016-08-22 10:08:16,575 INFO Got initial state
2016-08-22 10:08:16,576 INFO Loading Module: /export/hass/appdaemon_test/conf/apps/
→˓hello.py
2016-08-22 10:08:16,578 INFO Loading Object hello_world using class HelloWorld from
→˓module hello
2016-08-22 10:08:16,580 INFO Hello from AppDaemon
2016-08-22 10:08:16,584 INFO You are now ready to run Apps!

Note that for Docker, the error and regular logs are combined.

1.4.2 PIP3

You can run AppDaemon from the command line as follows:

$ appdaemon -c /home/homeassistant/conf

If all is well, you should see something like the following:

$ appdaemon -c /home/homeassistant/conf
2016-08-22 10:08:16,575 INFO Got initial state
2016-08-22 10:08:16,576 INFO Loading Module: /home/homeassistant/conf/apps/hello.py
2016-08-22 10:08:16,578 INFO Loading Object hello_world using class HelloWorld from
→˓module hello
2016-08-22 10:08:16,580 INFO Hello from AppDaemon
2016-08-22 10:08:16,584 INFO You are now ready to run Apps!

1.5 AppDaemon arguments

usage: appdaemon [-h] [-c CONFIG] [-p PIDFILE] [-t TIMEWARP] [-s STARTTIME]
[-e ENDTIME]
[-D {DEBUG,INFO,WARNING,ERROR,CRITICAL}] [-v] [-d]

optional arguments:
-h, --help show this help message and exit
-c CONFIG, --config CONFIG

full path to config directory
-p PIDFILE, --pidfile PIDFILE

full path to PID File
-t TIMEWARP, --timewarp multiplication factor for the scheduler time (see Time

→˓TraveL)
-s STARTTIME, --starttime STARTTIME

start time for scheduler <YYYY-MM-DD HH:MM:SS>
-e ENDTIME, --endtime ENDTIME

end time for scheduler <YYYY-MM-DD HH:MM:SS>
-D {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --debug {DEBUG,INFO,WARNING,ERROR,CRITICAL}

(continues on next page)

4 Chapter 1. Installation

DOCKER_TUTORIAL.html

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

debug level
-v, --version show program's version number and exit
-d, --daemon run as a background process

-c is the path to the configuration directory. If not specified, AppDaemon will look for a file named appdaemon.
yaml first in ~/.homeassistant then in /etc/appdaemon. If the directory is not specified and it is not found
in either location, AppDaemon will raise an exception. In addition, AppDaemon expects to find a dir named apps
immediately subordinate to the config directory.

-d and -p are used by the init file to start the process as a daemon and are not required if running from the command
line.

-D can be used to increase the debug level for internal AppDaemon operations as well as apps using the logging
function.

The -s, -i, -t and -e options are for the Time Travel feature and should only be used for testing. They are described in
more detail in the API documentation.

1.6 Starting At Reboot

To run AppDaemon at reboot, you can set it up to run as a systemd service as follows.

1.6.1 Add Systemd Service (appdaemon@appdaemon.service)

First, create a new file using vi:

$ sudo vi /etc/systemd/system/appdaemon@appdaemon.service

Add the following, making sure to use the correct full path for your config directory. Also, make sure you edit the
User to a valid user to run AppDaemon, usually the same user as you are running Home Assistant with is a good
choice.

[Unit]
Description=AppDaemon
After=home-assistant@homeassistant.service
[Service]
Type=simple
User=%I
ExecStart=/usr/local/bin/appdaemon -c <full path to config directory>
[Install]
WantedBy=multi-user.target

The above should work for hasbian, but if your homeassistant service is named something different you may
need to change the After= lines to reflect the actual name.

1.6.2 Activate Systemd Service

$ sudo systemctl daemon-reload
$ sudo systemctl enable appdaemon@appdaemon.service --now

Now AppDaemon should be up and running and good to go.

1.6. Starting At Reboot 5

AppDaemon Documentation, Release 4.0.7

1.7 Updating AppDaemon

To update AppDaemon after new code has been released, just run the following command to update your copy:

$ sudo pip3 install --upgrade appdaemon

If you are using docker, refer to the steps in the tutorial.

1.8 AppDaemon Versioning Strategy

AppDaemon uses a simple 3 point versioning strategy of the form x.y.z

• x = Major Version Number

• y = Minor Version Number

• z = Point Version Number

Major versions will be released when very significant changes have been made to the platform, or sizeable new
functionality has been added.

Minor versions will be released when incremental new features have been added, or breaking changes have occured

Point releases will typically contain bugfixes, and package upgrades

Users should be able to expect point release upgrades to be seamless, but should check release notes for breaking
changes and new functionality for minor or major releases.

1.9 Windows Support

AppDaemon runs under windows and has been tested with the official 3.8.1 release of python. However, there are a
couple of caveats:

• The -d or --daemonize option is not supported owing to limitations in the Windows implementation of
Python.

• Some internal diagnostics are disabled. This is not user-visible but may hamper troubleshooting of internal
issues if any crop up

AppDaemon can be installed exactly as per the instructions for every other version using pip3.

1.10 Windows Under the Linux Subsystem

Windows 10 now supports a full Linux bash environment that is capable of running Python. This is essentially
an Ubuntu distribution and works extremely well. It is possible to run AppDaemon in the same way as for Linux
distributions, and none of the above Windows Caveats apply to this version. This is the recommended way to run
AppDaemon in a Windows 10 and later environment.

1.11 Raspbian

Some users have reported a requirement to install a couple of packages prior to installing AppDaemon with the pip3
method:

6 Chapter 1. Installation

AppDaemon Documentation, Release 4.0.7

$ sudo apt-get install python-dev
$ sudo apt-get install libffi-dev

1.12 Raspberry Pi Docker

Since the official Docker image isn’t compatible with Raspberry Pi, you will need to build your own docker image
from the downloaded repository.

$ git clone https://github.com/home-assistant/appdaemon.git
$ cd appdaemon

You can then build and run the docker image locally as follows:

$ docker build -t appdaemon --build-arg IMAGE=python:3.8-alpine3.12 --network=host .
$ docker run --name=appdaemon -d -p 5050:5050 \

--restart=always \
-e HA_URL="<Your HA_URL value>" \
-e TOKEN="<your TOKEN value>" \
-e DASH_URL="http://$HOSTNAME:5050" \
-v <your_conf_folder>:/conf \
appdaemon:latest

For more information on running AppDaemon under Docker, see the Docker Tutorial. The key difference is that you
will be running a locally built instance of AppDaemon rather than one from Docker Hub, so for run commands, make
sure to specify “appdaemon:latest” as the image, as above, rather than “acockburn/appdaemon:latest” as the tutorial
states.

At the time of writing, @torkildr is maintaining a linked Raspberry Pi image here:

https://hub.docker.com/r/torkildr/rpi-appdaemon/

1.12. Raspberry Pi Docker 7

https://hub.docker.com/r/torkildr/rpi-appdaemon/

AppDaemon Documentation, Release 4.0.7

8 Chapter 1. Installation

CHAPTER 2

Configuration

When you have AppDaemon (AD) installed by either method you are ready to start working on the appdaemon.
yaml file. For docker users, you will already have a skeleton to work with. For pip users, you need to create a configu-
ration directory somewhere (e.g., /home/homeassistant/conf) and create a file in there called appdaemon.
yaml.

2.1 Initial Setup

Your initial appdaemon.yaml file should look something like this if you are using the HASS plugin:

appdaemon:
time_zone: CET
latitude: 51.725
longitude: 14.3434
elevation: 0
plugins:
HASS:

type: hass
ha_url: <some_url>
token: <some_long_lived_access_token>

The top level consists of a number of sections:

2.2 Log Configuration

The logs: section is optional. It consists of a number of log entries that describe the various system and user-defined
logs. The logs named main_log, error_log, diag_log and access_log have special significance and are
used to describe AppDaemons 4 main logs. Any other named log sections will result in the creation of a user-defined
log, which can be written to by your apps. The 4 built-in logfiles are used as follows:

• main_log is the path to where you want AppDaemon to keep its main log.

9

AppDaemon Documentation, Release 4.0.7

• error_log is the name of the logfile for errors - this will usually be errors during compilation and execution
of the apps. If errorfile = STDERR errors are sent to stderr instead of a file, if not specified, the output
will be sent to STDERR.

• diag_log is the name of the log file for diagnostic information. This will contain information form the
log_thread_actions parameter, as well as information dumped from AppDaemon’s internal state when
the AppDaemon process is sent a SIGUSR1 signal.

• access_log is the log that AppDaemon will write access information to for HADashboard and the admin
interface.

All 4 logs have defaults, so they do not need to be specified, but if any parameters are defined, they will override the
defaults.

A simple logs section might look like this:

logs:
main_log:
filename: /export/pegasus/hass/appdaemon_test/logs/appdaemon.log

access_log:
filename: /export/pegasus/hass/appdaemon_test/logs/access.log

error_log:
filename: /export/pegasus/hass/appdaemon_test/logs/error.log

diag_log:
filename: /export/pegasus/hass/appdaemon_test/logs/diag.log
log_generations: 5
log_size: 1024
format: "{asctime} {levelname:<8} {appname:<10}: {message}"

test_log:
name: TestLog
filename: /export/pegasus/hass/appdaemon_test/logs/test.log

All directives are optional with the exception of name for user defined logs. The directives have the following mean-
ings:

The directives are as follows:

• filename (optional) is the path to where you want the file to be written. If the directive is not specified, the
output is sent to STDOUT.

• log_size (optional) is the maximum size a logfile will get to before it is rotated if not specified, this will
default to 1000000 bytes.

• log_generations (optional) is the number of rotated logfiles that will be retained before they are overwrit-
ten if not specified, this will default to 3 files.

• format (optional) Format string for the log file - standard str.format() logger format

• date_format (optional) - Format string to specify how the date is rendered in standard datetime strftime()
format

• filter_threshold (optional) - number of repetitions of a log line allowed before filtering starts (default is
1). Setting filter_threshold to zero will turn off log filtering entirely - since AppDaemon relies on this
mechanism internally to prevent certain types of log loops, this is not recommended.

• filter_timeout (optional) - timeout for log filtering. Duplicate log entries that are output less frequently
than this value will not have filtering applied (default is 0.9 seconds)

• filter_repeat_delay (optional) - when filtering, repeating messages will be printed out periodically
every filter_repeat_delay seconds (default is 5 seconds)

10 Chapter 2. Configuration

https://docs.python.org/3.6/library/string.html#format-string-syntax
https://docs.python.org/3.6/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/3.6/library/datetime.html#strftime-strptime-behavior

AppDaemon Documentation, Release 4.0.7

Note: Filter parameters are set globally, but are applied to individual apps and modules within AppDaemon. This
means that log messages interspersed from different apps or from AppDaemon itself even though different, will not
reset the filtering of log messages from an individual app if they carry on repeating.

In the above example, a user-defined log called test_log has also been created this can be accessed from apps
directly from its logger object, or from the self.log call as follows:

Native logger
testlogger = self.get_user_log("test_log")
testlogger.info("Hello %s", "jim")
self.log()
self.log("Hello", log="test_log")

Note that the AppDaemon logs use an enhanced formatter that allows interpolation of the App Name in the logger
output as well as all the other standard fields. In addition, the {asctime} token will give the right results if time
travel is in use. For example, the default logfile format for AppDaemon’s main log is:

{asctime} {levelname} {appname:<20}: {message}

AppDaemon’s default time format is %Y-%m-%d %H:%M:%S.%f%z.

2.3 AppDaemon Configuration

The appdaemon: section has a number of directives:

• filters (optional) - see below.

• plugins (required) - see below.

• latitude (required) - latitude for AppDaemon to use (decimal format).

• longitude (required) - longitude for AppDaemon to use (decimal format).

• elevation (required) - elevation for AppDaemon to use in meters above sea level.

• time_zone (required) - timezone for AppDaemon to use (e.g. America/New_York).

• app_dir (Optional) - This can be used to place one’s apps in a directory, other than under the config directory.

• exclude_dirs (optional) - a list of subdirectories to ignore under the apps directory when looking for apps

• missing_app_warnings (optional) - by default, AppDaemon will log a warning if it finds a python file that
has no associated configuration in an apps.yaml file. If this parameter is set to 1 the warning will be suppressed.
This allows non-appdaemon python files to be distributed along with apps.

• invalid_yaml_warnings (optional) - by default, AppDaemon will log a warning if it finds an apps.yaml
file that doesn’t include “class” and “module” for an app. If this parameter is set to 1 the warning will be
suppressed. This is intended to ease the distribution of additional yaml files along with apps.

• production_mode (optional) - If set to true, AppDaemon will only check for changes in Apps and apps.yaml
files when AppDaemon is restarted, as opposed to every second. This can save some processing power on busy
systems. Defaults to False. This can also be changed from within apps, using the set_production_mode
API call.

• thread_duration_warning_threshold (optional) - AppDaemon monitors the time that each tread
spends in an App. If a thread is taking too long to finish a callback, it may impact other apps. AppDaemon will
log a warning if any thread is over the duration specified in seconds. The default is 10 seconds, setting this value
to 00 will disable the check.

2.3. AppDaemon Configuration 11

AppDaemon Documentation, Release 4.0.7

• log_thread_actions (optional) - if set to 1, AppDaemon will log all callbacks on entry and exit for the
scheduler, events, and state changes - this can be useful for troubleshooting thread starvation issues

When using the exclude_dirs directive, you should supply a list of directory names that should be ignored. For
example:

exclude_dirs:
- dir1
- dir2
- dir3

AppDaemon will search for matching directory names at any level of the folder hierarchy under appdir and will exclude
that directory and any beneath it. It is not possible to match multiple level directory names e.g., somedir/dir1. In
that case, the match should be on dir1, with the caveat that if you have dir1 anywhere else in the hierarchy, it will
also be excluded.

2.4 Advanced Appdaemon Configuration

The following items provide a high level of control over AppDaemon’s internal functions but for most users should be
left at the default settings.

• total_threads (optional) - the number of dedicated worker threads to create for running the apps. Normally,
AppDaemon will create enough threads to provide one per app, or default to 10 if app pinning is turned off.
Setting this to a value will turn off automatic thread management.

• pin_apps (optional) - When true (the default) Apps will be pinned to a particular thread which avoids com-
plications around re-entrant code and locking of instance variables

• pin_threads (optional) - Number of threads to use for pinned apps, allowing the user to section off a sub-
pool just for pinned apps. Default is to use all threads for pinned apps.

• threadpool_workers (optional) - the number of max_workers threads to be used by AD internally to
execute calls asynchronously. This defaults to 10.

• load_distribution - Algorithm to use for load balancing between unpinned apps. Can be round-robin
(the default), random or load

• timewarp (optional) - equivalent to the command line flag -t but will take precedence

• qsize_warning_threshold - total number of items on thread queues before a warning is issued, defaults
to 50

• qsize_warning_step - when total qsize is over ``qsize_warning_threshold a warning will be
issued every time the qsize_warning_step times the utility loop executes (normally once every second),
default is 60 meaning the warning will be issued once every 60 seconds.

• qsize_warning_iterations - if set to a value greater than 0, when total qsize is over
``qsize_warning_threshold a warning will be issued every time the qsize_warning_step
times the utility loop executes but not until the qsize has been excessive for a minimum of
qsize_warning_iterations. This allows you to tune out brief expected spikes in Q size. Default is
5, usually meaning 5 seconds.

• uvloop (optional) - When True, AD will switch from using default python asyncio loop, to utilizing the
uvloop. This is said to improve the speed of the loop. More can be read here about uvloop.

• namespaces (optional) - configure one or more User Defined Namespaces and set their writeback strategy

12 Chapter 2. Configuration

https://magic.io/blog/uvloop-blazing-fast-python-networking

AppDaemon Documentation, Release 4.0.7

namespaces:
andrew:

writeback is safe, performance or hybrid
writeback: safe

jim:
writeback: performance

fred:
writeback: hybrid

2.5 Secrets

AppDaemon supports the use of secrets in the configuration file, to allow separate storage of sensitive information
such as passwords. For this to work, AppDaemon expects to find a file called secrets.yaml in the configuration
directory, or a named file introduced by the top level secrets: section. The file should be a simple list of all the
secrets. The secrets can be referred to using a !secret value in the configuration file.

The secret: section is optional. If it doesn’t exist, AppDaemon looks for a file called secrets.yaml in the
config directory.

An example secrets.yaml might look like this:

token: ABCDEFG
appdaemon_key: password456

The secrets can then be referred to as follows:

appdaemon:
api_key: !secret appdaemon_key
threads: '10'
plugins:
HASS:

type: hass
token: !secret token
ha_url: http://192.168.1.20:8123

2.6 Filters

The use of filters allows you to run an arbitrary command against a file with a specific extension to generate a new
.py file. The use-cases for this are varied, but this can be used to run a preprocessor on an app, or perhaps some
kind of global substitute or any of a number of other commands. AppDaemon, when made aware of the filter via
configuration, will look for files in the appdir with the specified extension, and run the specified command on them,
writing the output to a new file with the specified extension. The output extension would usually be a .py file which
would then be picked up by normal app processing, meaning that if you edit the original input file, the result will be a
new .py file that is part of an app which will then be restarted.

In addition, it is possible to chain multiple filters, as the filter list is processed in order - just ensure you end with a .py
file.

A simple filter would look like this:

filters:
- command_line: /bin/cat $1 > $2

(continues on next page)

2.5. Secrets 13

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

input_ext: cat
output_ext: py

This would result in AppDaemon looking for any files with the extension .cat and running the /bin/cat command
and creating a file with an extension of .py. In the command_line, $1 and $2 are replaced by the correctly named
input and output files. In this example, the output is just a copy of the input, but this technique could be used with
commands such as sed and awk, or even m4 for more complex manipulations.

A chained set of filters might look like this:

filters:
- command_line: /bin/cat $1 > $2

input_ext: mat
output_ext: cat

- command_line: /bin/cat $1 > $2
input_ext: cat
output_ext: py

These will run in order resulting in edits to a .mat file running through the 2 filters and resulting in a new .py file
which will run as the app in the usual way.

Finally, it is possible to have multiple unconnected filters like so:

filters:
- command_line: /bin/cat $1 > $2

input_ext: mat
output_ext: .py

- command_line: /bin/cat $1 > $2
input_ext: cat
output_ext: py

Here we have defined .mat and .cat files as both creating new apps. In a real-world example the command_line
would be different.

2.7 Plugins

In the example above, you will see that home assistant is configured as a plugin (called HASS). For most applications
there is little significance to this - just configure a single plugin for HASS exactly as above. However, for power users,
this is a way to allow AppDaemon to work with more than one installation of Home Assistant and/or other plugins
such as MQTT.

The plugin architecture also allows the creation of plugins for other purposes, e.g., different home automation systems.

To configure more than one plugin, simply add a new section to the plugins list and configure it appropriately. Before
you do this, make sure to review the section on namespaces to fully understand what this entails, and if you are using
more than one plugin, make sure you use the namespace directive to create a unique namespace for each plugin. (One
of the plugins may be safely allowed to use the default value, however, any more than that will require the namespace
directive. There is also no harm in giving them all namespaces, since the default namespace is literally default and
has no particular significance, it’s just a different name, but if you use namespaces other than default you will need to
change your Apps to understand which namespaces are in use.).

14 Chapter 2. Configuration

AppDaemon Documentation, Release 4.0.7

2.7.1 Plugin Configuration

In the required plugins: sub-section, there will usually be one or more plugins with a number of directives intro-
duced by a top level name. Some of these are common to all plugins:

• type (required) The type of the plugin.

• namespace (optional) - which namespace to use. This can safely be left out unless you are planning to use
multiple plugins (see below)

• disable (optional) - if set to true, the plugin will not be loaded - defaults to false.

Plugins also support some optional parameters:

• refresh_delay - How often the complete state of the plugin is refreshed, in seconds. Default is 600 seconds.

• refresh_timeout - How long to wait for the state refresh before cancelling it, in seconds. Default is 30
seconds.

• persist_entities - If True all entities created within the plugin’s namespace will be persitent within AD.
So in the event of a restart, the entities will be recreated in the same namespace

The rest will vary depending upon which plugin type is in use.

2.7.2 Configuration of the HASS Plugin

To configure the HASS plugin, in addition to the required parameters above, you will need to add the following:

• type: This must be declared and it must be hass

• ha_url (required for the hass plugin) is a reference to your home assistant installation and must include the
correct port number and scheme (http:// or https:// as appropriate)

• ha_key should be set to your home assistant API password if you have one, otherwise it can be removed. This
directive is deprecated - you should use the token directive instead

• token (required) - set the long-lived token for access to your hass instance (see later for a description of how
to create a long-lived access token)

• cert_verify (optional) - flag for cert verification for HASS - set to False to disable verification on self-
signed certs, or certs for which the address used doesn’t match the cert address (e.g., using an internal IP address)

• api_port (optional) - Port the AppDaemon RESTFul API will listen on. If not specified, the RESTFul API
will be turned off.

• app_init_delay (optional) - If specified, when AppDaemon connects to HASS each time, it will wait for
this number of seconds before initializing apps and listening for events. This is useful for HASS instances that
have subsystems that take time to initialize (e.g., zwave).

• retry_secs (optional) - If specified, AD will wait for this many seconds in between retries to connect to
HASS (default 5 seconds)

• appdaemon_startup_conditions - see HASS Plugin Startup Conditions

• plugin_startup_conditions - see HASS Plugin Startup Conditions

For example:

app_dir: /etc/appdaemon/apps

An example of the HASS plugin could look like the following:

2.7. Plugins 15

AppDaemon Documentation, Release 4.0.7

secrets: /some/path
log:

accessfile: /export/hass/appdaemon_test/logs/access.log
errorfile: /export/hass/appdaemon_test/logs/error.log
logfile: /export/hass/appdaemon_test/logs/appdaemon.log
log_generations: 3
log_size: 1000000

appdaemon:
threads: 10
time_zone: <time zone>
api_port: 5000
api_key: !secret api_key
api_ssl_certificate: <path/to/root/CA/cert>
api_ssl_key: <path/to/root/CA/key>
plugins:
HASS:

type: hass
ha_url: <some_url>
token: <token>
cert_path: <path/to/root/CA/cert>
cert_verify: True
namespace: default

HASS Authentication

HASS has recently moved to a new authentication model. For programs such as AppDaemon it is necessary to create
a Long-Lived Access Token, then provide that token to AppDaemon with the token directive in the HASS plugin
parameters. To create a Long-Lived Access Token for AppDaemon, do the following:

1. Login as the user that you want to create the token for and open the user profile. The profile is found by clicking
the icon next to the Home Assistant label to the left of the web ui when the burger menu is clicked:

2. At the bottom of the user profile is the Long-Lived Access Tokens section. Click on “Create Token”

This will pop up a dialog that asks you for the name of the token - this can be anything, it’s just to remind you what
the token was created for - AppDaemon is as good a name as any. When you are done click OK

3. A new dialog will popup with the token itself showing:

16 Chapter 2. Configuration

AppDaemon Documentation, Release 4.0.7

2.7. Plugins 17

AppDaemon Documentation, Release 4.0.7

Copy this string and add it as the argument of the token directive in your HASS Plugin section:

token: ABCDEF

A real token will be a lot longer than this and will consist of a string of random letters and numbers. For example:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiIwZmRkYmE0YTM0MTY0...

4. A reference to your new token will be shown in the Long-Lived tokens section, and you can revoke access via
this token at any time by pressing the delete icon. The token will last for 10 years.

HASS Plugin Startup Conditions

The HASS plugin has the ability to pause startup until various criteria have been met. This can be useful to avoid
running apps that require certain entities to exist or to wait for an event to happen before the apps are started. There
are 2 types of startup criteria, and they are added :

• appdaemon_startup_conditions - These conditions are checked when AppDaemon starts. AppDaemon will not
start the HASS plugin until all of these conditions are met.

• plugin_startup_conditions - These conditions are checked if HASS restarts while AppDaemon is up. AppDae-
mon will not start the HASS plugin until all of these conditions are met.

AppDamon will pause the startup of the plugin until the conditions have been met. In particular, apps will not have
their initialize() functions run until the conditions have been met. These two sets of conditions operate
independently. If you want the same behavior during both startup scenarios then you need to include both sets
of conditions in the configuration file and make them the same. Each set of conditions takes the same format,
and there are 3 types of conditions. Currently each condition block supports only one of each type of condition.

delay

Delay startup for a number of seconds, e.g.:

delay:10

18 Chapter 2. Configuration

AppDaemon Documentation, Release 4.0.7

state

Wait until a specific state exists or has a specific value or set of values. The values are specified as an inline dictionary
as follows:

• wait until an entity exists - state: {entity: <entity id>}

• wait until an entity exists and has a specific value for its state: state: {entity: <entity id>,
value: {state: "on"}}

• wait until an entity exists and has a specific value for an attribute: state: {entity: <entity id>,
value: {attributes: {attribute: value}}}

States and values can be mixed, and they must all match with the state at a point in time for the condition to be satisfied,
for instance:

state: {entity: light.office_1, value: {state: "on", attributes: {brightness: 254}}}

event

Wait for a specific event.

• wait for a specific event of a given type: {event_type: <event name>}

• wait for a specific event with specific data: {event_type: <event name>,
data:{service_data:{entity_id: <some entity>}, service: <some service>}}

Different condition types may be specified in combination with the following caveats:

• The delay event always executes immediately upon startup, only once. No other checking is performed while
the delay is in progress

• State events will be evaluated after any delay every time a new state change event comes in

• Events will be evaluated at the time the event arrives. If there is an additional state event, and it does not match,
the event will be discarded, and the plugin will continue to wait until all conditions have been met. This is true
even if the state event has previously matched but has reverted to a non-matching state.

Examples

Wait for ZWave to complete initialization upon a HASS restart:

plugin_startup_conditions:
event: {event_type: zwave.network_ready}

Wait for a specific input boolean to be triggered when AppDaemon restarts:

appdaemon_startup_conditions:
event: {event_type: call_service, data:{domain: homeassistant, service_data:

→˓{entity_id: input_boolean.heating}, service: turn_on}}

2.7.3 Configuration of the MQTT Plugin

To configure the MQTT plugin, in addition to the required parameters above, you will need to add the following:

• type: This must be declared and it must be mqtt

2.7. Plugins 19

AppDaemon Documentation, Release 4.0.7

• namespace: (optional) This will default to default

• client_host: (optional) The IP address or DNS of the Broker. Defaults to 127.0.0.1 which is the localhost

• client_port: (optional) The port number used to access the broker. Defaults to 1883

• client_transport: (optional) The transport protocol used to access the broker. This can be either tcp or
websockets Defaults to tcp

• client_clean_session: (optional) If the broker should clear the data belonging to the client when it
disconnects. Defaults to True

• client_id: (optional) The client id to be used by the plugin, to connect to the broker. If not declared, this
will be auto-generated by the plugin. The generated the client id can be retrieved within the app

• client_user: (optional) The username to be used by the plugin to connect to the broker. It defaults to
None, so no username is used

• client_password: (optional) The password to be used by the plugin to connect to the broker. It defaults
to None, so no password is used

• client_cert: (optional) The certificate to be used when using SSL

• tls_version: (optional) TLS/SSL protocol version to use. Available options are: auto, 1.0, 1.1, 1.2.
Defaults to auto

• verify_cert: (optional) This is used to determine if to verify the certificate or not. This defaults to True
and should be left as True; if not no need having any certificate installed

• event_name: (optional) The preferred event name to be used by the plugin. This name is what apps will
listen to, to pick up data within apps. This defaults to MQTT_MESSAGE

• client_topics: (optional) This is a list of topics the plugin is to subscribe to on the broker. This defaults to
#, meaning it subscribes to all topics on the broker. This can be set to NONE, if it is desired to use the subscribe
service call within apps, to subscribe to topics.

• client_qos: (optional) The quality of service (QOS) level to be used in subscribing to the topics. This will
also be used as the default qos, when publishing and the qos is not specified by the publishing app.

• birth_topic: (optional) This is the topic other clients can subscribe to, to pick up the data sent by the client,
when the plugin connects to the broker. If not specified, one is auto-generated

• birth_payload: (optional) This is the payload sent by the plugin when it connects to the broker. If not
specified, it defaults to online

• birth_retain: (optional) This tells the broker if it should retain the birth message. If not specified, it
defaults to True

• will_topic: (optional) This is the topic other clients can subscribe to, to pick up the data sent by the broker,
when the plugin unceremoniously disconnects from the broker. If not specified, one is auto-generated

• will_payload: (optional) This is the payload sent by the broker when the plugin unceremoniously discon-
nects from the broker. If not specified, it defaults to offline

• will_retain: (optional) This tells the broker if it should retain the will message. If not specified, it defaults
to True

• shutdown_payload: (optional) This is the payload sent to the broker when the plugin disconnects from the
broker cleanly. It uses the same topic as the will_topic, and if not specified, defaults to the same payload
message and will_payload

• force_start: (optional) Normally when AD restarts, and the plugin cannot confirm connection to the
MQTT broker, it keeps retrying until it has established a connection; this can prevent AD from starting up
completely. This can be problematic, if AD is trying to connect to a Cloud broker, and the internet is down. If

20 Chapter 2. Configuration

AppDaemon Documentation, Release 4.0.7

one is certain of the broker details being correct, and there is a possibility of the broker bring down (e.g., loss
of internet connection if using an external broker), the force_start flag can be set to True. This way AD
will start up as usual, and when the broker is online, the plugin will connect to it. This defaults to False

All auto-generated data can be picked up within apps, using the self.get_plugin_config() API

An example of the MQTT plugin could look like the following:

MQTT:
type: mqtt
namespace: mqtt
verbose: True
client_host: Broker IP Address or DNS
client_port: Broker PORT Number
client_id: Client_ID
client_user: username
client_password: password
ca_cert: ca_cert
tls_version: auto
client_cert: mycert
client_key: mykey
verify_cert: True
event_name: MQTT_EVENT
client_topics:

- hermes/intent/#
- hermes/hotword/#

2.8 Configuring a Test App

This test app assumes the use of the HASS plugin, changes will be required to the app if another plugin is in use.

To add an initial test app to match the configuration above, we need to first create an apps subdirectory under the
conf directory. Then create a file in the apps directory called hello.py, and paste the following into it using your
favorite text editor:

import hassapi as hass

#
Hello World App
#
Args:
#

class HelloWorld(hass.Hass):

def initialize(self):
self.log("Hello from AppDaemon")
self.log("You are now ready to run Apps!")

Then, we can create a file called apps.yaml in the apps directory and add an entry for the Hello World App like this:

hello_world:
module: hello
class: HelloWorld

App configuration is fully described in the API doc.

2.8. Configuring a Test App 21

API.md

AppDaemon Documentation, Release 4.0.7

With this app in place we will be able to test the App part of AppDaemon when we first run it.

2.9 Configuring the HTTP Component

The HTTP component provides a unified front end to AppDaemon’s Admin Interface, HADashboard, and the App-
Daemon API. It requires some initial configuration, but the dashboard and admin interface can be separately enabled
or disabled. This component also creates a folder in the configuration directory called www, if it doesn’t exist. To
serve custom static content like images, videos or html pages, simply drop the content into the www folder and
it becomes available via the browser or dashboard. Content stored in this folder can be accessed using http://
AD_IP:Port/local/<content to be accessed>. Where AD_IP:Port is the url as defined below using
the http component.

It has it’s own top-level section in AppDaemon.yaml, and one mandatory argument, url:

http:
url: http://192.168.1.20:5050

• url - the URL you want the HTTP component to listen on

To password protect AppDaemon use the password directive:

Or you can use the secret function and place the actual password in your secrets.yaml file:

password: !secret ad_password

To enable https support for the HTTP Component and by extention the HADashboard and Admin UI, add the following
directives pointing to your certificate and keyfile:

AppDaemon uses websockets as the default protocol for streaming events from AppDaemon to the dashboard and
admin interface so the dashboard can respond to events in real-time. Some older devices, e.g., original iPad models,
do not support websockets. In this case, you may use the alternative socket.io protocol which has better support
for older devices. To do this, set the transport parameter to socketio. The default is ws which means the
websockets protocol will be used:

http:
transport: socketio

Additionally, arbitrary headers can be supplied in all server responses from AppDaemon with this configuration:

http:
headers:
My-Header-Here: "The Value Of My Header"

Headers are especially useful for dealing with CORS. In order to allow CORS from any domain, consider the following
configuration:

http:
headers:
Access-Control-Allow-Origin: "*"

This component can also be used to setup custom static directories, which has contents within it that needs to be served
using AD’s internal web server. This can range from images, videos, html pages and the likes. To do this, consider the
configuration below:

22 Chapter 2. Configuration

AppDaemon Documentation, Release 4.0.7

http:
static_dirs:
videos: /home/pi/video_clips
pictures: /home/pi/pictures

The above configuration assumes that the user has a folder, that has stored within it video clips from like cameras.
To access the videos stored in the video_clip folder via a browser or Dashboard, the url can be used http://
AD_IP:Port/local/videos/<video to be accessed>. Like wise, the pictures can be accessed using
http://AD_IP:Port/local/pictures/<picture to be accessed>. Using this directive does sup-
port the use of relative paths.

2.10 Configuring the Dashboard

Configuration of the dashboard component (HADashboard) is described separately in the Dashboard documentation.
Note that the dashboard depends on the HTTP section being configured to correctly function.

2.11 Configuring the API

The AppDaemon App API is configured by adding a top-level directive to appdaemon.yaml:

api:

It takes no arguments.

2.12 Configuring the Admin Interface

The Admin Interface, new in 4.0 is a new front end to AppDaemon that allows you to monitor it’s inner workings such
as thread activity, registered callbacks and entities. Over time it is expected to evolve into a full management tool for
AppDaemon allowing the user to configure, troubleshoot and monitor all of AppDaemon’s functions.

The Admin Interface is configured by first adding the HTTP Component and then also adding the top-level directive
to appdaemon.yaml:

admin:

The Interface can be accessed using a web browser and pointing it to the HTTP component URL.

the admin directive takes a number of configuration items:

• title: The title to be used for the browser window

• stats_update: Frequency with which stats are updated in the interface. Allowed values are none, batch,

realtime (default). none will turn off updates, batch will update the stats every time the utility loop executes,
usually every second. realtime is recommended for most applications, although if you have a very busy system,
operating with sub-second callbacks you may prefer to use batch for performance reasons.

2.10. Configuring the Dashboard 23

DASHBOARD_INSTALL.html

AppDaemon Documentation, Release 4.0.7

2.13 Accessing Directories via Apps

Directories used by AD internally either declared by the user or not, can be accessed by the user via apps. The
following directories are available:

• configuration: self.config_dir

• apps: self.app_dir

• dashboard: self.dashboard_dir

24 Chapter 2. Configuration

CHAPTER 3

Example Apps

There are a number of example apps under conf/examples in the git repository , and the conf/examples.
yaml file gives sample parameters for them.

25

https://github.com/home-assistant/appdaemon

AppDaemon Documentation, Release 4.0.7

26 Chapter 3. Example Apps

CHAPTER 4

AppDaemon Tutorial for HASS Users

AppDaemon is a subsystem to complement Home Assistant’s Automation and Scripting components. AppDaemon, is
a Python daemon that consumes events from Home Assistant and feeds them to snippets of Python code called Apps.
An App is a Python class that is instantiated possibly multiple times from AppDaemon and registers callbacks for
various system events. It is also able to inspect and set state and call services. The API provides a rich environment
suited to home automation tasks that can also leverage all the power of Python.

4.1 Another Take on Automation

If you haven’t yet read Paulus’ excellent Blog entry on Perfect Home Automation I would encourage you to take a
look. As a veteran of several Home Automation systems with varying degrees of success, it was this article more than
anything else that convinced me that Home Assistant had the right philosophy behind it and was on the right track.
One of the most important points made is that being able to control your lights from your phone, 9 times out of 10 is
harder than using a light switch. However, Home Automation becomes helpful when you start removing the need to
use a phone or the switch - the Automation in Home Automation. A surprisingly large number of systems out there
miss this essential point and have limited abilities to automate anything which is why a robust and open system such as
Home Assistant is such an important part of the equation in bringing this all together in the vast and chaotic ecosystem
that is the Internet of Things.

So given the importance of Automation, what should Automation allow us to do? I am a pragmatist at heart, so I judge
individual systems by the ease of accomplishing a few basic but representative tasks:

• Can the system respond to the presence or absence of people?

• Can I turn a light on at Sunset +/- a certain amount of time?

• Can I arrive home in light or dark and have the lights figure out if they should be on or off?

• As I build my system out, can I get the individual pieces to co-operate and use and reuse (potentially complex)
logic to make sure everything works smoothly?

• Is it open and expandable?

• Does it run locally without any reliance on the cloud?

27

https://home-assistant.io/blog/2016/01/19/perfect-home-automation/

AppDaemon Documentation, Release 4.0.7

In my opinion, Home Assistant accomplishes the majority of these very well with a combination of Automations,
Scripts, and Templates, and its Restful API.

So why AppDaemon? AppDaemon is not meant to replace Home Assistant Automations and Scripts, rather comple-
ment them. For a lot of things, automations work well and can be very succinct. However, there is a class of more
complex automations for which they become harder to use, and AppDaemon then comes into its own. It brings quite
a few things to the table:

• New paradigm - some problems require a procedural and/or iterative approach, and AppDaemon Apps are a
much more natural fit for this. Recent enhancements to Home Assistant scripts and templates have made huge
strides, but for the most complex scenarios, Apps can do things that Automations can’t

• Ease of use - AppDaemon’s API is full of helper functions that make programming as easy and natural as
possible. The functions and their operation are as Pythonic as possible, experienced Python programmers should
feel right at home.

• Reuse - write a piece of code once and instantiate it as an app as many times as you need with different param-
eters e.g., a motion light program that you can use in 5 different places around your home. The code stays the
same, you just dynamically add new instances of it in the config file

• Dynamic - AppDaemon has been designed from the start to enable the user to make changes without requiring a
restart of Home Assistant, thanks to its loose coupling. However, it is better than that - the user can make changes
to code and AppDaemon will automatically reload the code, figure out which Apps were using it and restart them
to use the new code without the need to restart AppDaemon itself. It is also possible to change parameters for
an individual or multiple apps and have them picked up dynamically, and for a final trick, removing or adding
apps is also picked up dynamically. Testing cycles become a lot more efficient as a result.

• Complex logic - Python’s If/Else constructs are clearer and easier to code for arbitrarily complex nested logic

• Durable variables and state - variables can be kept between events to keep track of things like the number of
times a motion sensor has been activated, or how long it has been since a door opened

• All the power of Python - use any of Python’s libraries, create your own modules, share variables, refactor and
re-use code, create a single app to do everything, or multiple apps for individual tasks - nothing is off-limits!

It is, in fact, a testament to Home Assistant’s open nature that a component like AppDaemon can be integrated so neatly
and closely that it acts in all ways like an extension of the system, not a second-class citizen. Part of the strength
of Home Assistant’s underlying design is that it makes no assumptions whatsoever about what it is controlling or
reacting to, or reporting state on. This is made achievable in part by the great flexibility of Python as a programming
environment for Home Assistant, and carrying that forward has enabled me to use the same philosophy for AppDaemon
- it took surprisingly little code to be able to respond to basic events and call services in a completely open-ended
manner - the bulk of the work after that was adding additional functions to make things that were already possible
easier.

4.2 How it Works

The best way to show what AppDaemon does is through a few simple examples.

4.2.1 Sunrise/Sunset Lighting

Let us start with a simple App to turn a light on every night fifteen minutes (900 seconds) before sunset and off ev-
ery morning at sunrise. Every App when first started will have its initialize() function called which gives
it a chance to register a callback for AppDaemons’s scheduler for a specific time. In this case, we are using
run_at_sunrise() and run_at_sunset() to register 2 separate callbacks. The named argument offset
is the number of seconds offset from sunrise or sunset and can be negative or positive (it defaults to zero). For
complex intervals, it can be convenient to use Python’s datetime.timedelta class for calculations. In the

28 Chapter 4. AppDaemon Tutorial for HASS Users

AppDaemon Documentation, Release 4.0.7

example below, when sunrise or just before sunset occurs, the appropriate callback function, sunrise_cb() or
before_sunset_cb() is called which then makes a call to Home Assistant to turn the porch light on or off by
activating a scene. The variables args["on_scene"] and args["off_scene"] are passed through from the
configuration of this particular App, and the same code could be reused to activate completely different scenes in a
different version of the App.

import hassapi as hass

class OutsideLights(hass.Hass):

def initialize(self):
self.run_at_sunrise(self.sunrise_cb)
self.run_at_sunset(self.before_sunset_cb, offset=-900)

def sunrise_cb(self, kwargs):
self.turn_on(self.args["off_scene"])

def before_sunset_cb(self, kwargs):
self.turn_on(self.args["on_scene"])

This is also fairly easy to achieve with Home Assistant automations, but we are just getting started.

4.2.2 Motion Light

Our next example is to turn on a light when motion is detected, and it is dark, and turn it off after a period of time.
This time, the initialize() function registers a callback on a state change (of the motion sensor) rather than a
specific time. We tell AppDaemon that we are only interested in state changes where the motion detector comes on by
adding an additional parameter to the callback registration - new = "on". When the motion is detected, the callback
function motion() is called, and we check whether or not the sun has set using a built-in convenience function:
sun_down(). Next, we turn the light on with turn_on(), then set a timer using run_in() to turn the light off
after 60 seconds, which is another call to the scheduler to execute in a set time from now, which results in AppDaemon
calling light_off() 60 seconds later using the turn_off() call to actually turn the light off. This is still pretty
simple in code terms:

import hassapi as hass

class MotionLights(hass.Hass):

def initialize(self):
self.listen_state(self.motion, "binary_sensor.drive", new = "on")

def motion(self, entity, attribute, old, new, kwargs):
if self.sun_down():

self.turn_on("light.drive")
self.run_in(self.light_off, 60)

def light_off(self, kwargs):
self.turn_off("light.drive")

At this point, things are starting to get a little more complicated. Home Assistant’s automations require an Automation
rule and two separate scripts.

Let’s use an artificial example to show something that is simple in AppDaemon but very difficult if not impossible using
automations. For example, we can warn someone inside the house that there has been motion outside by flashing a
lamp on and off 10 times. We are reacting to the motion as before by turning on the light and setting a timer to turn
it off again, but also, we set a 1 second timer to run flash_warning() which when called, toggles the inside light

4.2. How it Works 29

AppDaemon Documentation, Release 4.0.7

and sets another timer to call itself a second later. To avoid re-triggering forever, it keeps a count of how many times
it has been activated and bales out after 10 iterations.

import hassapi as hass

class FlashyMotionLights(hass.Hass):

def initialize(self):
self.listen_state(self.motion, "binary_sensor.drive", new = "on")

def motion(self, entity, attribute, old, new, kwargs):
if self.self.sun_down():

self.turn_on("light.drive")
self.run_in(self.light_off, 60)
self.flashcount = 0
self.run_in(self.flash_warning, 1)

def light_off(self, kwargs):
self.turn_off("light.drive")

def flash_warning(self, kwargs):
self.toggle("light.living_room")
self.flashcount += 1
if self.flashcount < 10:

self.run_in(self.flash_warning, 1)

Of course, if I wanted to make this App or its predecessor reusable I would have provided parameters for the sensor,
the light to activate on motion, the warning light and even the number of flashes and delay between flashes.

In addition, Apps can write to AppDaemon’s logfiles, and there is a system of constraints that allows you to control
when and under what circumstances Apps and callbacks are active to keep the logic clean and simple.

4.3 Final Thoughts

I have spent the last few weeks moving all of my (fairly complex) automations over to AppDaemon and so far it is
working very reliably.

Some people will maybe look at all of this and say “what use is this, I can already do all of this”, and that is fine,
as I said this is an alternative not a replacement, but I am hopeful that for some users this will seem a more natural,
powerful and nimble way of building potentially very complex automations.

If this has whet your appetite, feel free to give it a try. You can find installation instructions, here, including full
installation instructions, an API reference, and several fully fleshed-out examples and tutorials.

Happy Automating!

– AppDaemon Team

30 Chapter 4. AppDaemon Tutorial for HASS Users

INSTALL.rst
https://github.com/home-assistant/appdaemon/tree/dev/conf/example_apps
COMMUNITY_TUTORIALS.html

CHAPTER 5

AppDaemon with Docker

A quick tutorial to AppDaemon with Docker

5.1 About Docker

Docker is a popular application container technology. Application containers allow an application to be built in a
known-good state and run totally independent of other applications. This makes it easier to install complex soft-
ware and removes concerns about application dependency conflicts. Containers are powerful; however, they require
abstractions that can sometimes be confusing.

This guide will help you get the AppDaemon Docker image running and hopefully help you become more comfortable
with using Docker. There are multiple ways of doing some of these steps which are removed for the sake of keeping
it simple. As your needs change, just remember there’s probably a way to do what you want!

5.2 Prereqs

This guide assumes:

• You already have Docker installed. If you still need to do this, follow the Docker Installation documentation

• You have Home Assistant up and running

• You are comfortable with some tinkering. This is a pre-req for AppDaemon too!

• You’re not running on a Raspberry Pi. See the install page for further information.

5.3 Testing your System

Our first step will be to verify that we can get AppDaemon running on our machine, which tests that we can suc-
cessfully pull (download) software from Docker Hub, execute it and get output that AppDaemon is working. We will
worry about our persistent (normal) configuration later.

31

https://www.docker.com
https://docs.docker.com/engine/installation/
https://appdaemon.readthedocs.io/en/latest/INSTALL.html#raspberry-pi-docker/
https://hub.docker.com/r/acockburn/appdaemon

AppDaemon Documentation, Release 4.0.7

Before you start, you need to know the following:

• HA_URL: The URL of your running Home Assistant, in the form of http://[name]:[port]. Port is
usually 8123.

• TOKEN: If your Home Assistant is using Long-Lived Tokens you will need to use TOKEN

Now, on your Docker host, for Linux users, run the following command, substituting the values above in the quotes
below. (Note: to create a long-lived token, click your user icon in the HA front end and look for the Long-Lived
Access Tokens card. If you do not need a TOKEN, you can omit the entire -e TOKEN line)

docker run --rm -it -p 5050:5050 \
-e HA_URL="<your HA_URL value>" \
-e TOKEN="<your TOKEN value>" \
-e DASH_URL="http://$HOSTNAME:5050" \
acockburn/appdaemon:latest

You should see some download activity the first time you run this as it downloads the latest AppDaemon image. After
that is downloaded, Docker will create a container based on that image and run it. It will automatically delete itself
when it exits since right now we are just testing.

You will see AppDaemon’s output appear on your screen, and you should look for lines like these being outputs:

HASS: Connected to Home Assistant 0.80.0

2017-04-01 14:26:48.361140 INFO Connected to Home Assistant 0.80.0

The apps capability of AppDaemon is working, running the example Hello World app

2017-04-01 14:26:48.330084 INFO hello_world: Hello from AppDaemon
2017-04-01 14:26:48.333040 INFO hello_world: You are now ready to run Apps!

The dashboard capability of AppDaemon has started.

2018-10-25 16:53:09.105214 INFO Starting Dashboards

Now open up a web browser, and browse to http://<DASH_URL>:5050. You should see the “Welcome to HADash-
board for Home Assistant” screen and see the Hello dashboard is available.

If all of these checks work, congratulations! Docker and AppDaemon are working on your system! Hit Control-C to
exit the container, and it will clean up and return to the command line. It’s almost as if nothing happened. . .

5.4 Persistent Configuration

In Docker, containers (the running application) are considered ephemeral. Any state that you want to be able to
preserve must be stored outside of the container so that the container can be disposed of and recreated at any time. In
the case of AppDaemon, this means you would be concerned about your conf folder.

The first step is to create a location on your filesystem to store the conf folder. It does not matter where this is; some
people like to store it in the same location as Home Assistant. I like to keep a folder structure under /docker on my
systems, so we can do something like:

mkdir -p /docker/appdaemon/conf

Next, we will run a container again, omitting the --rm -it parameters and adding -d so that it stays background
and doesn’t disappear when it exits. We will also add --restart=always so that the container will auto-start on
system boot and restart on failures, and lastly specify our conf folder location. Note that the folder path must be fully
qualified and not relative.

32 Chapter 5. AppDaemon with Docker

http:/

AppDaemon Documentation, Release 4.0.7

docker run --name=appdaemon -d -p 5050:5050 \
--restart=always \
-e HA_URL="<your HA_URL value>" \
-e TOKEN="<your TOKEN value>" \
-e DASH_URL="http://$HOSTNAME:5050" \
-v <your_conf_folder>:/conf \
acockburn/appdaemon:latest

I would suggest documenting the command line above in your notes, so that you have it as a reference in the future for
rebuilding and upgrading. If you back up your command line, as well as your conf folder, you can trivially restore
AppDaemon on another machine or on a rebuild!

If your conf folder is brand new, the AppDaemon Docker will copy the default configuration files into this folder. If
there are already configuration files, it will not overwrite them. Double-check that the files are there now.

You are now ready to start working on your AppDaemon configurations!

At this point forward, you can edit configurations on your conf folder and AppDaemon will load them see the
AppDaemon Installation page for full instructions on AppDaemon configuration. Have fun!

5.5 Viewing AppDaemon Log Output

You can view the output of your AppDaemon with this command:

docker logs appdaemon

If you’d like to tail the latest output, try this:

docker logs -f --tail 20 appdaemon

5.6 Upgrading AppDaemon

Upgrading with Docker really doesn’t exist in the same way as with non-containerized apps. Containers are considered
ephemeral and are an instance of a base, known-good application image. Therefore the process of upgrading is simply
disposing of the old version, grabbing a newer version of the application image and starting up a new container with
the new version’s image. Since the persistent state (conf) was kept, it is effectively an upgrade.

(It is possible to get into downgrades and multiple versions, however in this guide we are keeping it simple!)

Run the following commands:

docker stop appdaemon
docker rm appdaemon
docker pull acockburn/appdaemon:latest
docker run --name=appdaemon -d -p 5050:5050 \

--restart=always \
-e HA_URL="<your HA_URL value>" \
-e TOKEN="<your TOKEN value>" \
-e DASH_URL="http://$HOSTNAME:5050" \
-v <your_conf_folder>:/conf \
acockburn/appdaemon:latest

5.5. Viewing AppDaemon Log Output 33

INSTALL.html

AppDaemon Documentation, Release 4.0.7

5.7 Controlling the AppDaemon Container

To restart AppDaemon:

docker restart appdaemon

To stop AppDaemon:

docker stop appdaemon

To start AppDaemon back up after stopping:

docker start appdaemon

To check the running state, run the following and look at the ‘STATUS’ column:

docker ps -a

5.8 Running with AppDaemon Debug

If you need to run AppDaemon with Debug, it may be easiest to stop your normal AppDaemon and run a temporary
container with the debug flag set. This presumes you already have a configured conf folder you are debugging, so
we don’t need to pass the HA/DASH variables into the container.

Run the following commands:

docker stop appdaemon
docker run --rm -it -p 5050:5050 \

-v <your_conf_folder>:/conf \
acockburn/appdaemon:latest -D DEBUG

Once you are done with the debugging, start the non-debug container back up:

docker start appdaemon

You can also append any other AppDaemon flags to the end of the command line if desired, e.g. to use time travel.

5.9 Timezones

Some users have reported issues with the Docker container running in different timezones to the host OS - this is
obviously problematic for any of the scheduler functions. Adding the following to the Docker command line has
helped some users:

-v /etc/localtime:/etc/localtime:ro

5.10 Home Assistant SSL

If your Home Assistant is running with self-signed certificates, you will want to point to the location of the certifi-
cate files as part of the container creation process. Add -v <your_cert_path>:/certs to the docker run
command line

34 Chapter 5. AppDaemon with Docker

AppDaemon Documentation, Release 4.0.7

5.11 Removing AppDaemon

If you no longer want to use AppDaemon confused, use the following commands:

docker kill appdaemon
docker rm appdaemon
docker rmi acockburn/appdaemon:latest

You can delete the conf folder if you wish at this time too. AppDaemon is now completely removed.

5.12 Adding Dependencies

Sometimes it can be helpful to install additional Python dependencies into the Docker container before AppDaemon
starts, to allow additional libraries to be used from Apps. The Docker script will recursively search the CONF directory
for any files named requirements.txt. All the found requirements will be used as input to pip3 to install any
packages that they describe.

It’s also often helpful to add system packages to the Docker container before AppDaemon starts, to allow any custom
python packages that depend on other system packages to install without issue. The Docker script will recursively
search the CONF directory for any files named system_packages.txt. Packages should be listed either space
delimited or newline delimited. These packages will be used as input to apk add to install any packages that they
describe.

5.11. Removing AppDaemon 35

https://pkgs.alpinelinux.org/packages

AppDaemon Documentation, Release 4.0.7

36 Chapter 5. AppDaemon with Docker

CHAPTER 6

Writing AppDaemon Apps

AppDaemon (AD) is a loosely coupled, sandboxed, multi-threaded Python execution environment for writing automa-
tion apps for Home Assistant, MQTT event broker and other home automation software.

6.1 Examples

Example apps that showcase most of these functions are available in the AppDaemon repository

6.2 Anatomy of an App

Actions in AppDaemon are performed by creating a piece of code (essentially a Python Class) and then instantiating
it as an Object one or more times by configuring it as an App in the configuration file. The App is given a chance to
register itself for whatever events it wants to subscribe to, and AppDaemon will then make calls back into the Object’s
code when those events occur, allowing the App to respond to the event with some kind of action.

The first step is to create a unique file within the apps directory (as defined here). This file, is in fact, a Python module,
and is expected to contain one or more classes derived from a supplied AppDaemon class or a custom plugin. For
instance, hass support can be used by importing from the supplied hassapi module. The start of an App might look
like this:

import hassapi as hass

class OutsideLights(hass.Hass):

For MQTT you would use the mqttapi module:

import mqttapi as mqtt

class OutsideLights(mqtt.Mqtt):

37

https://home-assistant.io/
http://mqtt.org/
https://github.com/home-assistant/appdaemon/tree/dev/conf/example_apps
INSTALL.html

AppDaemon Documentation, Release 4.0.7

When configured as an app in the config file (more on that later) the lifecycle of the App begins. It will be instantiated
as an object by AppDaemon, and immediately, it will have a call made to its initialize() function - this function
must appear as part of every App:

def initialize(self):

The initialize function allows the App to register any callbacks it might need for responding to state changes, and also
any setup activities. When the initialize() function returns, the App will be dormant until any of its callbacks
are activated.

There are several circumstances under which initialize() might be called:

• Initial start of AppDaemon

• Following a change to the Class code

• Following a change to the module parameters

• Following initial configuration of an App

• Following a change in the status of Daylight Saving Time

• Following a restart of a plugin or underlying subsystem such as Home Assistant

In every case, the App is responsible for recreating any state it might need as if it were the first time it was ever started.
If initialize() is called, the App can safely assume that it is either being loaded for the first time, or that all
callbacks and timers have been canceled. In either case, the App will need to recreate them. Depending upon the
application, it may be desirable for the App to establish a state, such as whether or not a particular light is on, within
the initialize() function to ensure that everything is as expected or to make immediate remedial action (e.g.,
turn off a light that might have been left on by mistake when the App was restarted).

After the initialize() function is in place, the rest of the App consists of functions that are called by the various
callback mechanisms, and any additional functions the user wants to add as part of the program logic. Apps are able
to subscribe to three main classes of events:

• Scheduled Events

• State Change Events

• Other Events

These, along with their various subscription calls and helper functions, will be described in detail in later sections.

Optionally, a class can add a terminate() function. This function will be called ahead of the reload to allow the
class to perform any tidy up that is necessary.

WARNING: Unlike other types of callback, calls to initialize() and terminate() are synchronous to App-
Daemon’s management code to ensure that initialization or cleanup is completed before the App is loaded or reloaded.
This means that any significant delays in the terminate() code could have the effect of hanging AppDaemon for
the duration of that code - this should be avoided.

To wrap up this section, here is a complete functioning HASS App (with comments):

import hassapi as hass
import datetime

Declare Class
class NightLight(hass.Hass):
#initialize() function which will be called at startup and reload
def initialize(self):
Create a time object for 7pm
time = datetime.time(19, 00, 0)

(continues on next page)

38 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

Schedule a daily callback that will call run_daily() at 7pm every night
self.run_daily(self.run_daily_callback, time)

Our callback function will be called by the scheduler every day at 7pm
def run_daily_callback(self, kwargs):
Call to Home Assistant to turn the porch light on
self.turn_on("light.porch")

To summarize - an App’s lifecycle consists of being initialized, which allows it to set one or more states and/or
schedule callbacks. When those callbacks are activated, the App will typically use one of the Service Calling calls to
effect some change to the devices of the system and then wait for the next relevant state change. Finally, if the App is
reloaded, there is a call to its terminate() function if it exists. That’s all there is to it!

6.3 About the API

The implementation of the API is located in the AppDaemon class that Apps are derived from. The code for the
functions is therefore available to the App simply by invoking the name of the function from the object namespace
using the self keyword, as in the above examples. self.turn_on() for example is just a method defined in the
parent class and made available to the child. This design decision was made to simplify some of the implementation
and hide passing of unnecessary variables during the API invocation.

6.4 Configuration of Apps

Apps are configured by specifying new sections in an app configuration file. The App configuration files exist under the
apps directory and can be called anything as long as they end in .yaml. You can have one single file for configuration
of all apps, or break it down to have one yaml file per App, or anything in between. Coupled with the fact that you
can have any number of subdirectories for apps and yaml files, this gives you the flexibility to structure your apps as
you see fit. It should also be noted that a “dot” . is not allowed in the app name.

The entry for an individual App within a yaml file is simply a dictionary entry naming the App, with subfields to
supply various parameters. The name of the section is the name the App is referred to within the system in log files
etc. and must be unique.

To configure a new App you need a minimum of two directives:

• module - the name of the module (without the .py) that contains the class to be used for this App

• class - the name of the class as defined within the module for the App’s code

Although the section/App name must be unique, it is possible to re-use a class as many times as you want, and
conversely to put as many classes in a module as you want. A sample definition for a new App might look as follows:

newapp:
module: new
class: NewApp

When AppDaemon sees the following configuration, it will expect to find a class called NewApp defined in a module
called new.py in the apps subdirectory. Apps can be placed at the root of the Apps directory or within a subdirectory,
an arbitrary depth down - wherever the App is, as long as it is in some subdirectory of the Apps dir, or in the Apps dir
itself, AppDaemon will find it. There is no need to include information about the path, just the name of the file itself
(without the .py) is sufficient. If names in the subdirectories overlap, AppDir will pick one of them but the exact
choice it will make is undefined. When starting the system for the first time or when reloading an App or Module,
the system will log the fact in its main log. It is often the case that there is a problem with the class, maybe a syntax

6.3. About the API 39

AppDaemon Documentation, Release 4.0.7

error or some other problem. If that is the case, details will be output to the error log allowing the user to remedy the
problem and reload.

In general, the user should always keep an eye on the error log - system errors will be logged to the main log, any
errors that are the responsibility of the user, e.g. that come from app code will be found in the error log.

6.5 Steps to writing an App

1. Create the code in a new or shared module by deriving a class from AppDaemon, add required callbacks and
code

2. Add the App to the app configuration file

3. There is no number 3

6.6 Reloading Modules and Classes

Reloading of modules is automatic. When the system spots a change in a module, it will automatically reload
and recompile the module. It will also figure out which Apps were using that Module and restart them, causing
their terminate() functions to be called if they exist, all of their existing callbacks to be cleared, and their
initialize() function to be called. It should be noted that if a terminate function exists, and while executing
it AD encounters an error, the app will not be auto reloaded. The app will only be reloaded, when next the app’s file
has been changed, presumably to fix the issue.

The same is true if changes are made to an App’s configuration - changing the class, or arguments (see later) will cause
that App to be reloaded in the same way. The system is also capable of detecting if a new App has been added, or if
one has been removed, and it will act appropriately, starting the new App immediately and removing all callbacks for
the removed App.

The suggested order for creating a new App is to first add the apps.yaml entry then the module code and work until it
compiles cleanly. A good workflow is to continuously monitor the error file (using tail -f on Linux for instance)
to ensure that errors are seen and can be remedied.

6.7 Passing Arguments to Apps

There wouldn’t be much point in being able to run multiple versions of an App if there wasn’t some way to instruct
them to do something different. For this reason, it is possible to pass any required arguments to an App, which are
then made available to the object at runtime. The arguments themselves can be called anything (apart from module
or class) and are simply added into the section after the 2 mandatory directives like so:

MyApp:
module: myapp
class: MyApp
param1: spam
param2: eggs

Within the Apps code, the 2 parameters (as well as the module and class) are available as a dictionary called args,
and accessed as follows:

param1 = self.args["param1"]
param2 = self.args["param2"]

40 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

A use case for this might be an App that detects motion and turns on a light. If you have 3 places you want to run
this, rather than hardcoding this into 3 separate Apps, you need only code a single App and instantiate it 3 times with
different arguments. It might look something like this:

downstairs_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.downstairs_hall
light: light.downstairs_hall

upstairs_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.upstairs_hall
light: light.upstairs_hall

garage_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.garage
light: light.garage

Apps can use arbitrarily complex structures within arguments, e.g.:

entities:
- entity1
- entity2
- entity3

Which can be accessed as a list in python with:

for entity in self.args["entities"]:
do some stuff

Also, this opens the door to really complex parameter structures if required:

sensors:
sensor1:
type:thermometer
warning_level: 30
units: degrees

sensor2:
type:moisture
warning_level: 100
units: %

It is also possible to get some constants like the app directory within apps. This can be accessed using the attribute
self.app_dir

6.7.1 Secrets

AppDaemon supports the ability to pass sensitive arguments to apps, via the use of secrets in the main or app config
file. This will allow separate storage of sensitive information such as passwords. For this to work, AppDaemon
expects to find a file called secrets.yaml in the configuration directory, or a named file introduced by the top level
secrets: section. The file should be a simple list of all the secrets. The secrets can be referred to using a !secret
tag in the apps.yaml file.

An example secrets.yaml might look like this:

6.7. Passing Arguments to Apps 41

AppDaemon Documentation, Release 4.0.7

application_api_key: ABCDEFG

The secrets can then be referred to in the apps.yaml file as follows:

appname:
class: AppClass
module: appmodule
application_api_key: !secret application_api_key

In the App, the api_key can be accessed like every other argument the App can access.

6.7.2 Environment Variables

If not wanting to use the secrets as above, AppDaemon also supports the ability to pass sensitive arguments to apps, via
the use of environment variables in the main or app config file. This will allow separate storage of sensitive information
such as passwords, within the os’s environment variables. The varibales can be referred to using a !env_var tag in
the apps.yaml file.

An example using the os’s time zone for AD:

appdaemon:
time_zone: !env_var TZ
latitude: !env_var LAT
longitude: !env_var LONG

The variables can also be referred to in the apps.yaml file as follows:

appname:
class: AppClass
module: appmodule
application_api_key: !env_var application_api_key

In the App, the api_key can be accessed like every other argument the App can access.

6.8 App Dependencies

It is possible for apps to be dependant upon other apps. Some examples where this might be the case are:

• A global App that defines constants for use in other apps

• An App that provides a service for other modules, e.g., a TTS App

In these cases, when changes are made to one of these apps, we also want the apps that depend upon them to be
reloaded. Furthermore, we also want to guarantee that they are loaded in order so that the apps depended upon by
other modules are loaded first.

AppDaemon fully supports this through the use of the dependency directive in the App configuration. Using this
directive, each App identifies other apps that it depends upon. The dependency directive will identify the name of the
App it cares about, and AppDaemon will see to it that the dependency is loaded before the App depending on it, and
that the dependent App will be reloaded if it changes.

For example, an App Consumer, uses another App Sound to play sound files. Sound in turn uses Global to store
some global values. We can represent these dependencies as follows:

42 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

Global:
module: global
class: Global

Sound
module: sound
class: Sound
dependencies: Global

Consumer:
module: sound
class: Sound
dependencies: Sound

It is also possible to have multiple dependencies, added as a yaml list

Consumer:
module: sound
class: Sound
dependencies:
- Sound
- Global

AppDaemon will write errors to the log if a dependency is missing and it will also detect circular dependencies.

Dependencies can also be set using the register_dependency() api call.

6.9 App Loading Priority

It is possible to influence the loading order of Apps using the dependency system. To add a loading priority to an App,
simply add a priority entry to its parameters. e.g.:

downstairs_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.downstairs_hall
light: light.downstairs_hall
priority: 10

Priorities can be any number you like, and can be float values if required, the lower the number, the higher the priority.
AppDaemon will load any modules with a priority in the order specified.

For modules with no priority specified, the priority is assumed to be 50. It is, therefore, possible to cause modules to
be loaded before and after modules with no priority.

The priority system is complementary to the dependency system, although they are trying to solve different problems.
Dependencies should be used when an App literally depends upon another, for instance, it is using variables stored in it
with the get_app() call. Priorities should be used when an App does some setup for other apps but doesn’t provide
variables or code for the dependent App. An example of this might be an App that sets up some sensors in Home
Assistant, or sets some switch or input_slider to a specific value. It may be necessary for that setup to be performed
before other apps are started, but there is no requirement to reload those apps if the first App changes.

To accommodate both systems, dependency trees are assigned priorities in the range 50 - 51, again allowing apps to
set priorities such that they will be loaded before or after specific sets of dependent apps.

Note that apps that are dependent upon other apps, and apps that are depended upon by other apps will ignore any
priority setting in their configuration.

6.9. App Loading Priority 43

AppDaemon Documentation, Release 4.0.7

6.10 App Log

Starting from AD 4.0, it is now possible to determine which log as declared by the user, will be used by Apps by
default when using the self.log() within the App; this can be very useful for debugging purposes. This is done
by simply adding the log: directive entry, to its parameters. e.g.:

downstairs_motion_light:
module: motion_light
class: MotionLight
sensor: binary_sensor.downstairs_hall
light: light.downstairs_hall
log: lights_log

By declaring the above, each time the function self.log() is used within the App, the log entry is sent to the user
defined lights_log. It is also possible to write to another log, within the same App if need be. This is done using
the function self.log(text, log='main_log'). Without using any of the aforementioned log capabilities,
all logs from apps by default will be sent to the main_log.

6.11 Global Module Dependencies

The previously described dependencies and load order have all been at the App level. It is however, sometimes
convenient to have global modules that have no apps in them that nonetheless require dependency tracking. For
instance, a global module might have a number of useful variables in it. When they change, a number of apps may
need to be restarted. To configure this dependency tracking, it is first necessary to define which modules are going to
be tracked. This is done in any apps.yaml file, although it should only be in one place. We use the global_modules
directive:

global_modules: global

This means that the file globals.py anywhere with in the apps directory hierarchy is marked as a global module.
Any App may simply import globals and use its variables and functions. Marking multiple modules as global can
be achieved using standard YAML list format:

global_modules:
- global1
- global2
- global3

Once we have marked the global modules, the next step is to configure any apps that are dependant upon them. This
is done by adding a global_dependencies field to the App description, e.g.:

app1:
class: App
module: app
global_dependencies: global

Or for multiple dependencies:

app1:
class: App
module: app
global_dependencies:
- global1
- global2

44 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

With this in place, whenever a global module changes that apps depend upon, all dependent apps will be reloaded.
This also works well with the App level dependencies. If a change to a global module forces an App to reload that
other apps are dependant upon, the dependant apps will also be reloaded in sequence.

6.12 Plugin Reloads

When a plugin reloads e.g., due to the underlying system restarting, or a network issue, AppDaemon’s default assump-
tion is that all apps could potentially be dependant on that system, and it will force a restart of every App. It is possible
to modify this behavior at the individual App level, using the plugin parameter in apps.yaml. Specifying a specific
plugin or list of plugins will force the App to reload after the named plugin restarts.

For a simple AppDaemon install, the appdaemon.yaml file might look something like this:

appdaemon:
threads: 10
plugins:
HASS:

type: hass
ha_url: <some_url>
ha_key: <some_key>

In this setup, there is only one plugin, and it is called HASS - this will be the case for most AppDaemon users.

To make an App explicitly reload when only this plugin and no other is restarted (e.g., in the case when HASS restarts
or when AppDaemon loses connectivity to HASS), use the plugin parameter like so:

appname:
module: some_module
class: some_class
plugin: HASS

If you have more than one plugin, you can make an App dependent on more than one plugin by specifying a YAML
list:

appname:
module: some_module
class: some_class
plugin:

- HASS
- OTHERPLUGIN

If you want to prevent the App from reloading at all, just set the plugin parameter to some value that doesn’t match
any plugin name, e.g.:

appname:
module: some_module
class: some_class
plugin: NONE

Note, that this only effects reloading at plugin restart time:

• apps will be reloaded if the module they use changes

• apps will be reloaded if their apps.yaml changes

• apps will be reloaded when a change to or from DST (Daylight Saving Time) occurs

• apps will be reloaded if an App they depend upon is reloaded as part of a plugin restart

6.12. Plugin Reloads 45

AppDaemon Documentation, Release 4.0.7

• apps will be reloaded if changes are made to a global module that they depend upon

6.13 Callback Constraints

Callback constraints are a feature of AppDaemon that removes the need for repetition of some common coding checks.
Many Apps will wish to process their callbacks only when certain conditions are met, e.g., someone is home, and it’s
after sunset. These kinds of conditions crop up a lot, and use of callback constraints can significantly simplify the
logic required within callbacks.

Put simply, callback constraints are one or more conditions on callback execution that can be applied to an individual
App. App’s callbacks will only be executed if all of the constraints are met. If a constraint is absent, it will not be
checked for.

For example, a time callback constraint can be added to an App by adding a parameter to its configuration like this:

some_app:
module: some_module
class: SomeClass
constrain_start_time: sunrise
constrain_end_time: sunset

Now, although the initialize() function will be called for SomeClass, and it will have a chance to register as
many callbacks as it desires, none of the callbacks will execute, in this case, unless it is between sunrise and sunset.

An App can have as many or as few constraints as are required. When more than one constraint is present, they must
all evaluate to true to allow the callbacks to be called. Constraints becoming true are not an event in their own right,
but if they are all true at a point in time, the next callback that would otherwise be blocked due to constraint failure
will now be called. Similarly, if one of the constraints becomes false, the next callback that would otherwise have been
called will be blocked.

6.13.1 AppDaemon Constraints

AppDaemon itself supplies the time constraint:

time

The time constraint consists of 2 variables, constrain_start_time and constrain_end_time. Callbacks
will only be executed if the current time is between the start and end times.

• If both are absent no time constraint will exist

• If only start is present, end will default to 1 second before midnight

• If only end is present, start will default to midnight

The times are specified in a string format with one of the following formats:

• HH:MM:SS - the time in Hours Minutes and Seconds, 24 hour format.

• sunrise|sunset [+|- HH:MM:SS]- time of the next sunrise or sunset with an optional positive or negative
offset in Hours Minutes and seconds

The time based constraint system correctly interprets start and end times that span midnight.

46 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

Run between 8am and 10pm
constrain_start_time: "08:00:00"
constrain_end_time: "22:00:00"
Run between sunrise and sunset
constrain_start_time: sunrise
constrain_end_time: sunset
Run between 45 minutes before sunset and 45 minutes after sunrise the next day
constrain_start_time: sunset - 00:45:00
constrain_end_time: sunrise + 00:45:00

days

The day constraint consists of as list of days for which the callbacks will fire, e.g.,

constrain_days: mon,tue,wed

Other constraints may be supplied by the plugin in use.

6.13.2 HASS Plugin Constraints

The HASS plugin supplies several additional different types of constraints:

• input_boolean

• input_select

• presence

• time (see AppDaemon Constraints)

They are described individually below.

input_boolean

By default, the input_boolean constraint prevents callbacks unless the specified input_boolean is set to on. This is
useful to allow certain Apps to be turned on and off from the user interface. For example:

some_app:
module: some_module
class: SomeClass
constrain_input_boolean: input_boolean.enable_motion_detection

If you want to reverse the logic so the constraint is only called when the input_boolean is off, use the optional state
parameter by appending, off to the argument, e.g.:

some_app:
module: some_module
class: SomeClass
constrain_input_boolean: input_boolean.enable_motion_detection,off

6.13. Callback Constraints 47

APPGUIDE.html#time

AppDaemon Documentation, Release 4.0.7

input_select

The input_select constraint prevents callbacks unless the specified input_select is set to one or more of the nominated
(comma separated) values. This is useful to allow certain Apps to be turned on and off according to some flag, e.g., a
house mode flag.

Single value
constrain_input_select: input_select.house_mode,Day
or multiple values
constrain_input_select: input_select.house_mode,Day,Evening,Night

presence

The presence constraint will constrain based on presence of device trackers. It takes 3 possible values:

• noone - only allow callback execution when no one is home

• anyone - only allow callback execution when one or more person is home

• everyone - only allow callback execution when everyone is home

constrain_presence: anyone
or
constrain_presence: everyone
or
constrain_presence: noone

Callback constraints can also be applied to individual callbacks within Apps, see later for more details.

person

The person constraint will constrain based on presence of person entities trackers. It takes 3 possible values:

• noone - only allow callback execution when no one is home

• anyone - only allow callback execution when one or more person is home

• everyone - only allow callback execution when everyone is home

constrain_person: anyone
or
constrain_person: everyone
or
constrain_person: noone

Callback constraints can also be applied to individual callbacks within Apps, see later for more details.

6.14 AppDaemon and Threading

AppDaemon is multi-threaded. This means that any time code within an App is executed, it is executed by one of many
threads. This is generally not a particularly important consideration for this application; in general, the execution time
of callbacks is expected to be far quicker than the frequency of events causing them. By default, AppDaemon protects
Apps from threading considerations by pinning each App to a specific thread, which means it is not possible for an App
to be running in more than one thread at a time. In extremely busy systems this may cause a reduction in performance
but this is unlikely.

48 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

By default, each App gets its own unique thread to run in. This is generally more threads than are required but it
prevents badly behaved apps from blocking other apps pinned to the same thread. This organization can be optimized
to use fewer threads if desired by using some of the advanced options below. AppDaemon will dynamically manage
the threads for you, creating enough for each App, and adding threads over the lifetime of AppDaemon if new apps
are added, to guarantee they all get their own thread.

For most users, threading should be left at the defaults, and things will behave sensibly. If however, you understand
concurrency, locking, and re-entrant code, read on for some additional advanced options.

6.14.1 Thread Hygiene

An additional caveat of a threaded worker pool environment is that it is the expectation that none of the callbacks tie
threads up for a significant amount of time. To do so would eventually lead to thread exhaustion, which would make
the system run behind events. No events would be lost as they would be queued, but callbacks would be delayed,
which is a bad thing.

Given the above, NEVER use Python’s time.sleep() if you want to perform an operation some time in the future,
as this will tie up a thread for the period of the sleep. Instead, use the scheduler’s run_in() function which will
allow you to delay without blocking any threads.

6.14.2 Disabling App Pinning

If you know what you are doing and understand the risks, you can disable AppDaemon’s App Pinning, partially or
totally. AppDaemon gives you a huge amount of control, allowing you to enable or disable pinning of individual apps,
all apps of a certain class, or even down to the callback level. AppDaemon also lets you explicitly choose which thread
apps or callbacks run on, resulting in extremely fine-grained control.

If you disable App pinning, you will start with a default number of 10 threads, but this can be modified with the
total_threads setting in appdaemon.yaml.

To disable App Pinning globally within AppDaemon set the AppDaemon directive pin_apps to false within the
AppDaemon.yaml file and App pinning will be disabled for all apps. At this point, it is possible for different pieces of
code within the App to be executed concurrently, so some care may be necessary if different callbacks, for instance,
inspect and change shared variables. This is a fairly standard caveat with concurrent programming, and AppDaemon
supplies a simple locking mechanism to help avoid this.

6.14.3 Simple Callback Level Locking

The real issue here is that callbacks in an unpinned App can be called at the same time, and even have multiple threads
running through them at the same time. To add locking and avoid this, AppDaemon supplies a decorator called ad.
app_lock. If you use this with any callbacks that manipulate instance variables, you will ensure that there will only
be one thread accessing the variables at one time.

Consider the following App which schedules 1000 callbacks all to run at the exact same time, and manipulate the
value of self.important_var:

import hassapi as hass
import datetime

class Locking(hass.Hass):

def initialize(self):
self.important_var = 0

(continues on next page)

6.14. AppDaemon and Threading 49

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

now = datetime.datetime.now()
target = now + datetime.timedelta(seconds=2)
for i in range (1000):

self.run_at(self.hass_cb, target)

def hass_cb(self, kwargs):
self.important_var += 1
self.log(self.important_var)

As it is, it will result in unexpected results because self.important_var can be manipulated by multiple threads
at once - for instance, a thread could get the value, add one to it and be just about to write it when another thread jumps
in with a different value, which is immediately overwritten. Indeed, when this is run, the output shows just that:

2018-11-04 16:07:01.615683 INFO lock: 981
2018-11-04 16:07:01.616150 INFO lock: 982
2018-11-04 16:07:01.616640 INFO lock: 983
2018-11-04 16:07:01.617781 INFO lock: 986
2018-11-04 16:07:01.584471 INFO lock: 914
2018-11-04 16:07:01.621809 INFO lock: 995
2018-11-04 16:07:01.614406 INFO lock: 978
2018-11-04 16:07:01.622616 INFO lock: 997
2018-11-04 16:07:01.619447 INFO lock: 990
2018-11-04 16:07:01.586680 INFO lock: 919
2018-11-04 16:07:01.619926 INFO lock: 991
2018-11-04 16:07:01.620401 INFO lock: 992
2018-11-04 16:07:01.620897 INFO lock: 993
2018-11-04 16:07:01.622156 INFO lock: 996
2018-11-04 16:07:01.603427 INFO lock: 954
2018-11-04 16:07:01.621381 INFO lock: 994
2018-11-04 16:07:01.618622 INFO lock: 988
2018-11-04 16:07:01.623005 INFO lock: 998
2018-11-04 16:07:01.623968 INFO lock: 1000
2018-11-04 16:07:01.623519 INFO lock: 999

However, if we add the decorator to the callback function like so:

import hassapi as hass
import datetime

class Locking(hass.Hass):

def initialize(self):
self.important_var = 0

now = datetime.datetime.now()
target = now + datetime.timedelta(seconds=2)
for i in range (1000):

self.run_at(self.hass_cb, target)

@ad.app_lock
def hass_cb(self, kwargs):

self.important_var += 1
self.log(self.important_var)

The result is what we would hope for since self.important_var is only being accessed by one thread at a time:

50 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

2018-11-04 16:08:54.545795 INFO lock: 981
2018-11-04 16:08:54.546202 INFO lock: 982
2018-11-04 16:08:54.546567 INFO lock: 983
2018-11-04 16:08:54.546976 INFO lock: 984
2018-11-04 16:08:54.547563 INFO lock: 985
2018-11-04 16:08:54.547938 INFO lock: 986
2018-11-04 16:08:54.548407 INFO lock: 987
2018-11-04 16:08:54.548815 INFO lock: 988
2018-11-04 16:08:54.549306 INFO lock: 989
2018-11-04 16:08:54.549671 INFO lock: 990
2018-11-04 16:08:54.550133 INFO lock: 991
2018-11-04 16:08:54.550476 INFO lock: 992
2018-11-04 16:08:54.550811 INFO lock: 993
2018-11-04 16:08:54.551170 INFO lock: 994
2018-11-04 16:08:54.551684 INFO lock: 995
2018-11-04 16:08:54.552022 INFO lock: 996
2018-11-04 16:08:54.552651 INFO lock: 997
2018-11-04 16:08:54.553033 INFO lock: 998
2018-11-04 16:08:54.553474 INFO lock: 999
2018-11-04 16:08:54.553890 INFO lock: 1000

The above scenario is only an issue when thread pinning is disabled. However, another issue with threading arises
when apps call each other and modify variables using the get_app() call, regardless of whether or not apps are
pinned. If a particular App is called at the same time from several different apps using get_app(), the App in
question will potentially be running on many threads at the same time, and any local resources such as instance
variables that are updated could be corrupted. @ad.app_lock will also work well to address this situation, if it is
applied to the function in the App that is being called. This will force the function to lock using the local lock of the
App being called and will enable thread-safe operation.

app1:

my_app = get_app("app2")
my_app.myfunction()

app2:

@ad.app_lock
def my_function()

self.variable + = 1

6.14.4 Global Locking

The above style of locking works well for the protection of variables within a single App and across apps using
get_app(). However, another area where threading might be of concern is if apps are accessing and modifying the
dictionary of the global variables which has no locking.

The solution is a global locking decorator called @ad.global_lock:

@ad.global_lock
def so_something_with_global_vars()

self.global_vars += 1

6.14. AppDaemon and Threading 51

AppDaemon Documentation, Release 4.0.7

6.14.5 Per-App Pinning

Individual apps can be set to override the global AppDaemon setting for App Pinning by use of the pin_app directive
in apps.yaml:

module: test
class: Test
pin_app: false

So if for instance, AppDaemon is set to globally pin apps, the above example will override that and make the App
unpinned.

Likewise, if the default is to globally unpin apps, setting pin_app to true will pin the App.

In addition to controlling pinning, it is also possible to specify the exact thread an App’s callbacks will run on, using
the pin_thread directive:

module: test
class: Test
pin_app: true
pin_thread: 6

This will result in all callbacks for this App being run by thread 6. The pin_thread directive will be ignored if
pin_app is set to false, or if pin_app is not specified and the global setting is to not pin apps.

6.14.6 Per Class Pinning

In addition to per-App pinning, it is possible to pin an entire class so that all apps running that code can be pinned or
not. This is achieved using an API call, usually in the initialize() function that will control whether or not the
App is pinned, which will also apply to all apps of the same type since they share the code. Pinning can be enabled or
disabled, and thread selected using the pinning API calls:

• set_app_pin()

• get_app_pin()

• set_pin_thread()

• get_pin_thread()

These API calls are dynamic, so it is possible to pin and unpin an App as required as well as select the thread it will
run on at any point in the Apps lifetime. Callbacks for the scheduler, events or state changes will inherit the values
currently set at the time the callback is registered:

Turn on app pinning
self.set_app_pin(True)
Select a thread
self.set_pin_thread(5)
Set a scheduler callback for an hour hence
self.run_in(my_callback, 3600)
Change the thread
self.set_pin_thread(3)
Set a scheduler callback for 2 hours hence
self.run_in(my_callback, 7200)

The code above will result in 2 callbacks, the first will run on thread 5, the second will run on thread 3.

52 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

6.14.7 Per Callback Pinning

Per Class Pinning described above, despite its dynamic nature is really intended to be a set and forget setup ac-
tivity in the apps initialize() function. For more dynamic use, it is possible to set the pinning and thread
at the callback level, using the pin and pin_thread parameters to scheduler calls and listen_state() and
listen_event(). These parameters will override the default settings for the App as set in apps.yaml or via the
API calls above, but just for the callback in question.

Turn off app pinning
self.set_app_pin(True)
Select a thread
self.set_pin_thread(5)
Set a scheduler callback for an hour hence
self.run_in(my_callback, 3600, pin=False)

The above callback will not be pinned.

Turn off app pinning
set_app_pin(True)
Select a thread
set_pin_thread(5)
Set a scheduler callback for an hour hence
run_in(my_callback, 3600, pin_thread=9)

The above callback will be run on thread 9, overriding the call to set_pin_thread().

Set a scheduler callback for an hour hence
run_in(my_callback, 3600, pin=True)

The above code is an edge case, if the global or App default is set to not pin. In this case, there won’t be an obvious
thread to use since it isn’t specified, so the callback will default to run on thread 0.

6.14.8 Restricting Threads for Pinned Apps

For some usages in mixed pinned and non-pinned environments, it may be desirable to reserve a block of thread
specifically for pinned apps. This can be achieved by setting the pin_threads directive in AppDamon.yaml:

pin_threads: 5

In the above example, 5 threads will be reserved for pinned apps, meaning that pinned apps will only run on threads
0 - 4, and will be distributed among them evenly. If the system has 10 threads total, threads 5 - 9 will have no pinned
apps running on them, representing spare capacity. In order to utilize the spare threads, you can code apps to explicitly
run on them, or set them in the apps.yaml, perhaps reserving threads for specific high priority apps, while the rest of
the apps share the lower priority threads. Another way to manage this is via the selection of an appropriate scheduler
algorithm.

pin_threads will default to the actual number of threads, if App pinning is turned on globally, and it will default
to 0 if App pinning is turned off globally. In a mixed setting, if you have any unpinned apps at all you must ensure that
pin_threads is set to a value less than threads.

6.14.9 Scheduler Algorithms

When apps are pinned, there is no choice necessary as to which thread will run a given callback. It will either be
selected by AppDaemon, or explicitly specified by the user for each App. For the remainder of unpinned Apps,

6.14. AppDaemon and Threading 53

AppDaemon Documentation, Release 4.0.7

AppDaemon must make a choice as to which thread to use, in an attempt to keep the load balanced. There is a choice
of 3 strategies, set by the load_distribution directive in appdaemon.yaml:

• roundrobin (default) - distribute callbacks to threads in a sequential fashion, one thread after another, starting
at the beginning when all threads have had their turn. Round Robin scheduling will honor the pin_threads
directive and only use threads not reserved for pinned apps.

• random - distribute callbacks to available threads in a random fashion. Random will also honor the
pin_threads directive

• load - distribute callbacks to the least busy threads (measured by their Q size). Since Load based scheduling is
dynamically responding to load, it will take all threads into consideration, including those reserved for pinned
apps.

For example:

load_distribution: random

6.14.10 A Final Thought on Threading and Pinning

Although pinning and scheduling has been thoroughly tested, in current real-world applications for AppDaemon, very
few of these considerations matter, since in most cases AppDaemon will be able to respond to a callback immediately,
and it is unlikely that any significant scheduler queueing will occur unless there are problems with apps blocking
threads. At the rate that most people are using AppDaemon, events come in a few times a second, and modern
hardware can usually handle the load pretty easily. The considerations above will start to matter more when event
rates become a lot faster, by at least an order of magnitude. That is now a possibility with the recent upgrade to
the scheduler allowing sub-second tick times, so the ability to lock and pin apps were added in anticipation of new
applications for AppDaemon that may require more robust management of apps and much higher event rates.

6.15 ASYNC Apps

Note: This is an advanced feature and should only be used if you understand the usage and implications of async
programming in Python. If you do not, then the previously described threaded model of apps is much safer and easier
to work with.

AppDaemon supports the use of async libraries from within apps as well as allowing a partial or complete async
programming model. Callback functions can be converted into coroutines by using the async keyword during their
declaration. AppDaemon will automatically detect all the App’s coroutines and will schedule their execution on the
main async loop. This also works for initialize() and terminate(). Apps can be a mix of sync and async
callbacks as desired. A fully async app might look like this:

import hassapi as hass

class AsyncApp(hass.Hass):

async def initialize(self):
Maybe access an async library to initialize something
self.run_in(self.hass_cb, 10)

async def my_function(self):
More async stuff here

async def hass_cb(self, kwargs):
do some async stuff

(continues on next page)

54 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

Sleeps are perfectly acceptable
await self.sleep(10)

Call another coroutine
await my_function()

When writing ASYNC apps, please be aware that most of the methods available in ADAPI (generally referenced
as self.method_name() in an app) are async methods. While these coroutines are automatically turned into a
future for you, if you intend to use the data they return you’ll need to await them.

This will not give the expected result:

async def some_method(self):
handle = self.run_in(self.cb, 30)

This, however, will:

async def some_method(self):
handle = await self.run_in(self.cb, 30)

If you do not need to use the return result of the method, and you do not need to know that it has completed before
executing the next line of your code, then you do not need to await the method.

6.15.1 ASYNC Advantages

• Programming using async constructs can seem natural to advanced users who have used it before, and in some
cases, can provide performance benefits depending on the exact nature of the task.

• Some external libraries are designed to be used in an async environment, and prior to AppDaemon async support
it was not possible to make use of such libraries.

• Scheduling heavily concurrent tasks is very easy using async

• Using sleep() in async apps is not harmful to the overall performance of AppDaemon as it is in regular sync
apps

6.15.2 ASYNC Caveats

The AppDaemon implementation of ASYNC apps utilizes the same loop as the AppDaemon core. This means that a
badly behaved app will not just tie up an individual app; it can potentially tie up all other apps, and the internals of
AppDaemon. For this reason, it is recommended that only experienced users create apps with this model.

6.15.3 ASYNC Tools

AppDaemon supplies a number of helper functions to make things a little easier:

Creating Tasks

For additional multitasking, Apps are fully able to create tasks or futures, however, the app has the responsibility
to manage them. In particular, any created tasks or futures must be completed or actively canceled when the app is
terminated or reloaded. If this is not the case, the code will not reload correctly due to Pyhton’s garbage collection
strategy. To assist with this, AppDaemon has a create_task() call, which returns a future. Tasks created in

6.15. ASYNC Apps 55

AppDaemon Documentation, Release 4.0.7

this way can be manipulated as desired, however, AppDaemon keeps track of them and will automatically cancel
any outstanding futures if the app terminates or reloads. For this reason, AppDaemon’s create_task() is the
recommended way of doing this.

Use of Executors

A standard pattern for running I/O intensive tasks such as file or network access in the async programming model
is to use executor threads for these types of activities. AppDaemon supplies the run_in_executor() function
to facilitate this, which uses a predefined thread-pool for execution. As mentioned above, holding up the loop with
any blocking activity is harmful not only to the app but all other apps and AppDaemon’s internals, so always use an
executor for any function that may require it.

Sleeping

Sleeping in Apps is perfectly fine using the async model. For this purpose, AppDaemon provides the sleep()
function. If this function is used in a non-async callback, it will raise an exception.

6.15.4 ASYNC Threading Considerations

• Bear in mind, that although the async programming model is single threaded, in an event-driven environment
such as AppDaemon, concurrency is still possible, whereas in the pinned threading model it is eliminated. This
may lead to requirements to lock data structures in async apps.

• By default, AppDaemon creates a thread for each App (unless you are managing the threads yourself). For a
fully async app, the thread will be created but never used.

• If you have a 100% async environment, you can prevent the creation of any threads by setting
total_threads: 0 in appdaemon.yaml

6.16 State Operations

AppDaemon maintains a master state list segmented by namespace. As plugins notify state changes, AppDaemon
listens and stores the updated state locally.

The MQTT plugin does not use state at all, and it relies on events to trigger actions, whereas the Home Assistant
plugin makes extensive use of state.

6.16.1 A note on Home Assistant State

State within Home Assistant is stored as a collection of dictionaries, one for each entity. Each entity’s dictionary will
have some common fields and a number of entity type-specific fields. The state for an entity will always have the
attributes:

• last_updated

• last_changed

• state

Any other attributes such as brightness for a lamp will only be present if the entity supports them, and will be stored
in a sub-dictionary called attributes. When specifying these optional attributes in the get_state() call, no
special distinction is required between the main attributes and the optional ones - get_state() will figure it out for
you.

56 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

Also, bear in mind that some attributes such as brightness for a light, will not be present when the light is off.

In most cases, the attribute state has the most important value in it, e.g., for a light or switch this will be on or off,
for a sensor it will be the value of that sensor. Many of the AppDaemon API calls and callbacks will implicitly return
the value of state unless told to do otherwise.

Although the use of get_state() (below) is still supported, as of AppDaemon 2.0.9 it is possible to access HASS
state directly as an attribute of the App itself, under the entities attribute.

For instance, to access the state of a binary sensor, you could use:

sensor_state = self.entities.binary_sensor.downstairs_sensor.state

Similarly, accessing any of the entity attributes is also possible:

name = self.entities.binary_sensor.downstairs_sensor.attributes.friendly_name

6.16.2 About Callbacks

A large proportion of home automation revolves around waiting for something to happen and then reacting to it; a light
level drops, the sun rises, a door opens, etc. Plugins keep track of every state change that occurs within the system,
and they streams that information to AppDaemon almost immediately.

A single App however usually doesn’t care about the majority of state changes going on in the system; Apps usually
care about something very specific, like a specific sensor or light. Apps need a way to be notified when a state change
happens that they care about, and be able to ignore the rest. They do this by registering callbacks. A callback allows
the App to describe exactly what it is interested in, and tells AppDaemon to make a call into its code in a specific place
to be able to react to it - this is a very familiar concept to anyone familiar with event-based programming.

There are 3 types of callbacks within AppDaemon:

• State Callbacks - react to a change in state

• Scheduler Callbacks - react to a specific time or interval

• Event Callbacks - react to specific Home Assistant and AppDaemon events.

All callbacks allow users to specify additional parameters to be handed to the callback via the standard Python
**kwargs mechanism for greater flexibility, these additional arguments are handed to the callback as a standard
Python dictionary,

6.16.3 About Registering Callbacks

Each of the various types of callback have their own function or functions for registering the callback:

• listen_state() for state callbacks

• Various scheduler calls such as run_once() for scheduling callbacks

• listen_event() for event callbacks.

Each type of callback shares a number of common mechanisms that increase flexibility.

Callback Level Constraints

When registering a callback, you can add constraints identical to the Application level constraints described earlier.
The difference is that a constraint applied to an individual callback only affects that callback and no other. The con-
straints are applied by adding Python keyword-value style arguments after the positional arguments. The parameters

6.16. State Operations 57

AppDaemon Documentation, Release 4.0.7

themselves are named identically to the previously described constraints and have identical functionality. For instance,
adding:

constrain_presence="everyone"

to a HASS callback registration will ensure that the callback is only run if the callback conditions are met, and
in addition everyone is present although any other callbacks might run whenever their event fires if they have no
constraints.

For example:

self.listen_state(self.motion, "binary_sensor.drive", constrain_presence="everyone")

User Arguments

Any callback can allow the App creator to pass through arbitrary keyword arguments that will be presented to the
callback when it is run. The arguments are added after the positional parameters, just like the constraints. The only
restriction is that they cannot be the same as any constraint name for obvious reasons. For example, to pass the
parameter arg1 = "home assistant" through to a callback you would register a callback as follows:

self.listen_state(self.motion, "binary_sensor.drive", arg1="home assistant")

Then in the callback it is presented back to the function as a dictionary and you could use it as follows:

def motion(self, entity, attribute, old, new, kwargs):
self.log("Arg1 is {}".format(kwargs["arg1"]))

6.16.4 State Callbacks

AppDaemons’s state callbacks allow an App to listen to a wide variety of events, from every state change in the system,
right down to a change of a single attribute of a particular entity. Setting up a callback is done using a single API call
listen_state() which takes various arguments to allow it to do all of the above. Apps can register as many or as
few callbacks as they want.

6.16.5 About State Callback Functions

When calling back into the App, the App must provide a class function with a known signature for AppDaemon to
call. The callback will provide various information to the function to enable the function to respond appropriately. For
state callbacks, a class defined callback function should look like this:

def my_callback(self, entity, attribute, old, new, kwargs):
<do some useful work here>

You can call the function whatever you like - you will reference it in the listen_state() call, and you can create
as many callback functions as you need.

The parameters have the following meanings:

self

A standard Python object reference.

58 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

entity

Name of the entity the callback was requested for or None.

attribute

Name of the attribute the callback was requested for or None.

old

The value of the state before the state change.

new

The value of the state after the state change.

old and new will have varying types depending on the type of callback.

**kwargs

A dictionary containing any constraints and/or additional user specific keyword arguments supplied to the
listen_state() call.

The kwargs dictionary will also contain a field called handle that provides the callback with the handle that identifies
the listen_state() entry that resulted in the callback.

6.17 Publishing State from an App

Using AppDaemon, it is possible to explicitly publish state from an App. The published state can contain whatever you
want, and is treated exactly like any other HA state, e.g., to the rest of AppDaemon, and the dashboard it looks like an
entity. This means that you can listen for state changes in other apps and also publish arbitrary state to the dashboard
via the use of specific entity IDs. To publish state, you will use set_app_state(). State can be retrieved and
listened for with the usual AppDaemon calls.

6.18 The Scheduler

AppDaemon contains a powerful scheduler that is able to run with microsecond resolution to fire off specific events at
set times, or after set delays, or even relative to sunrise and sunset.

6.18.1 About Schedule Callbacks

As with State Change callbacks, Scheduler Callbacks expect to call into functions with a known and specific signature
and a class defined Scheduler callback function should look like this:

def my_callback(self, kwargs):
<do some useful work here>

6.17. Publishing State from an App 59

AppDaemon Documentation, Release 4.0.7

You can call the function whatever you like; you will reference it in the Scheduler call, and you can create as many
callback functions as you need.

The parameters have the following meanings:

self

A standard Python object reference

**kwargs

A dictionary containing Zero or more keyword arguments to be supplied to the callback.

6.18.2 Creation of Scheduler Callbacks

Scheduler callbacks are created through use of a number of convenience functions which can be used to suit the
situation.

6.18.3 Scheduler Randomization

All of the scheduler calls above support 2 additional optional arguments, random_start and random_end. Using
these arguments it is possible to randomize the firing of callbacks to the degree desired by setting the appropriate
number of seconds with the parameters.

• random_start - start of range of the random time

• random_end - end of range of the random time

random_start must always be numerically lower than random_end, they can be negative to denote a random
offset before and event, or positive to denote a random offset after an event. The event would be an absolute or relative
time or sunrise/sunset depending on which scheduler call you use, and these values affect the base time by the specified
amount. If not specified, they will default to 0.

For example:

Run a callback in 2 minutes minus a random number of seconds between 0 and 60, e.g.
→˓run between 60 and 120 seconds from now
self.handle = self.run_in(callback, 120, random_start = -60, **kwargs)
Run a callback in 2 minutes plus a random number of seconds between 0 and 60, e.g.
→˓run between 120 and 180 seconds from now
self.handle = self.run_in(callback, 120, random_end = 60, **kwargs)
Run a callback in 2 minutes plus or minus a random number of seconds between 0 and
→˓60, e.g. run between 60 and 180 seconds from now
self.handle = self.run_in(callback, 120, random_start = -60, random_end = 60,
→˓**kwargs)

6.19 Sunrise and Sunset

AppDaemon has a number of features to allow easy tracking of sunrise and sunset as well as a couple of scheduler
functions. Note that the scheduler functions also support the randomization parameters described above, but they
cannot be used in conjunction with the offset parameter.

60 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

6.20 Calling Services

6.20.1 About Home Assistant Services

Services within Home Assistant are how changes are made to the system and its devices. Services can be used to turn
lights on and off, set thermostats and a whole number of other things. Home Assistant supplies a single interface to
all these disparate services that take arbitrary parameters. AppDaemon provides the call_service() function to
call into Home Assistant and run a service. In addition, it also provides convenience functions for some of the more
common services making calling them a little easier.

Other plugins may or may not support the notion of services

6.21 Events

6.21.1 About Events

Events are a fundamental part of how AppDaemon works under the covers. AD receives important events from all of
its plugins and communicates them to apps as required. For instance, the MQTT plugin will generate an event when a
message is received; The HASS plugin will generate an event when a service is called, or when it starts or stops.

6.21.2 Events and MQTT

The MQTT plugin uses events as its primary (and only interface) to MQTT. The model is fairly simple - every time an
MQTT message is received, and event of type MQTT_MESSAGE is fired. Apps are able to subscribe to this event and
process it appropriately.

6.21.3 Events and Home Assistant

We have already seen how state changes can be propagated to AppDaemon via the HASS plugin - a state change
however is merely an example of an event within Home Assistant. There are several other event types, among them
are:

• homeassistant_start

• homeassistant_stop

• state_changed

• service_registered

• call_service

• service_executed

• platform_discovered

• component_loaded

Using the HASS plugin, it is possible to subscribe to specific events as well as fire off events.

6.20. Calling Services 61

AppDaemon Documentation, Release 4.0.7

6.21.4 AppDaemon Specific Events

In addition to the HASS and MQTT supplied events, AppDaemon adds 3 more events. These are internal to AppDae-
mon and are not visible on the Home Assistant bus:

• appd_started - fired once when AppDaemon is first started and after Apps are initialized. It is fired within
the global namespace

• app_initialized - fired when an App is initialized. It is fired within the admin namespace

• app_terminated - fired when an App is terminated. It is fired within the admin namespace

• plugin_started - fired when a plugin is initialized and properly setup e.g. connection to Home Assistant.
It is fired within the plugin’s namespace

• plugin_stopped - fired when a plugin terminates, or becomes internally unstable like a disconnection from
an external system like an MQTT broker. It is fired within the plugin’s namespace

• service_registered - fired when a service is registered in AD. It is fired within the namespace it was
registered

• stream_connected - fired when a stream client connects like the Admin User Interface. It is fired within
the admin namespace

• stream_disconnected - fired when a stream client disconnects like the Admin User Interface. It is fired
within the admin namespace

6.21.5 About Event Callbacks

As with State Change and Scheduler callbacks, Event Callbacks expect to call into functions with a known and specific
signature and a class defined Scheduler callback function should look like this:

def my_callback(self, event_name, data, kwargs):
<do some useful work here>

You can call the function whatever you like - you will reference it in the Scheduler call, and you can create as many
callback functions as you need.

The parameters have the following meanings:

self

A standard Python object reference.

event_name

Name of the event that was called, e.g., call_service.

data

Any data that the system supplied with the event as a dict.

kwargs

A dictionary containing Zero or more user keyword arguments to be supplied to the callback.

62 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

6.21.6 listen_event()

Listen event sets up a callback for a specific event, or any event.

Synopsis

handle = listen_event(function, event = None, **kwargs):

Returns

A handle that can be used to cancel the callback.

Parameters

function

The function to be called when the event is fired.

event

Name of the event to subscribe to. Can be a standard HASS or MQTT plugin event such as service_registered
or in the case of HASS, an arbitrary custom event such as "MODE_CHANGE". If no event is specified,
listen_event() will subscribe to all events.

**kwargs (optional)

One or more keyword value pairs representing App specific parameters to supply to the callback. If the keywords
match values within the event data, they will act as filters, meaning that if they don’t match the values, the callback
will not fire.

As an example of this, a Minimote controller when activated will generate an event called zwave.
scene_activated, along with 2 pieces of data that are specific to the event - entity_id and scene. If you
include keyword values for either of those, the values supplied to the listen_event() 1 call must match the values
in the event or it will not fire. If the keywords do not match any of the data in the event, they are simply ignored.

Filtering will work with any event type, but it will be necessary to figure out the data associated with the event to
understand what values can be filtered on. This can be achieved by examining Home Assistant’s logfiles when the
event fires.

Examples

self.listen_event(self.mode_event, "MODE_CHANGE")
Listen for a minimote event activating scene 3:
self.listen_event(self.generic_event, "zwave.scene_activated", scene_id = 3)
Listen for a minimote event activating scene 3 from a specific minimote:
self.listen_event(self.generic_event, "zwave.scene_activated", entity_id = "minimote_
→˓31", scene_id = 3)

6.21. Events 63

AppDaemon Documentation, Release 4.0.7

6.21.7 Use of Events for Signalling between Home Assistant and AppDaemon

Home Assistant allows for the creation of custom events, and existing components can send and receive them. This
provides a useful mechanism for signaling back and forth between Home Assistant and AppDaemon. For instance, if
you would like to create a UI Element to fire off some code in Home Assistant, all that is necessary is to create a script
to fire a custom event, then subscribe to that event in AppDaemon. The script would look something like this:

alias: Day
sequence:
- event: MODE_CHANGE

event_data:
mode: Day

The custom event MODE_CHANGE would be subscribed to with:

self.listen_event(self.mode_event, "MODE_CHANGE")

Home Assistant can send these events in a variety of other places - within automations, and also directly from Alexa
intents. Home Assistant can also listen for custom events with its automation component. This can be used to signal
from AppDaemon code back to home assistant. Here is a sample automation:

automation:
trigger:
platform: event
event_type: MODE_CHANGE
...
...

This can be triggered with a call to AppDaemon’s fire_event() as follows:

self.fire_event("MODE_CHANGE", mode = "Day")

6.21.8 Use of Events for Interacting with HADashboard

HADashboard listens for certain events. An event type of “hadashboard” will trigger certain actions such as page
navigation. For more information see the Dashboard configuration pages

AppDaemon provides convenience functions to assist with this.

6.21.9 HASS Presence

Presence in Home Assistant is tracked using Device Trackers. The state of all device trackers can be found using the
get_state() call. However, AppDaemon provides several convenience functions to make this easier.

6.21.10 Writing to Logfiles

AppDaemon uses 2 separate logs - the general log and the error log. An App can write to either of these using the
supplied convenience methods log() and error(), which are provided as part of parent AppDaemon class, and
the call will automatically pre-pend the name of the App making the call.

The functions are based on the Python logging module and are able to pass through parameters for interpolation,
and additional parameters such as exc_info just as with the usual style of invocation. Use of loggers interpolation
method over the use of format() is recommended for performance reasons, as logger will only interpolate of the
line is actually written whereas format() will always do the substitution.

64 Chapter 6. Writing AppDaemon Apps

DASHBOARD.html

AppDaemon Documentation, Release 4.0.7

The -D option of AppDaemon can be used to specify a global logging level, and Apps can individually have their
logging level set as required. This can be achieved using the set_log_level() API call, or by using the special
debug argument to the apps settings in apps.yaml:

log_level: DEBUG

In addition, apps can select a default log for the log() call using the log directive in apps.yaml, referencing the sec-
tion name in appdaemon.yaml. This can be one of the 4 builtin logs, main_log, error_log, diag_log and
access_log, or a user-defined log, e.g.:

log: test_log

If an App has set a default log other than one of the 4 built in logs, these logs can still be accessed specifically using
either the log= parameter of the log() call, or by getting the appropriate logger object using the get_user_log() call,
which also works for default logs.

AppDaemon’s logging mechanism also allows you to use placeholders for the module, function, and line number. If
you include the following in the test of your message:

__function__
__module__
__line__

They will automatically be expanded to the appropriate values in the log message.

6.22 Getting Information in Apps and Sharing information between
Apps

Sharing information between different Apps is very simple if required. Each App gets access to a global dictionary
stored in a class attribute called self.global_vars. Any App can add or read any key as required. This operation
is not, however, threadsafe so some care is needed - see the section on threading for more details.

In addition, Apps have access to the entire configuration if required, meaning they can access AppDaemon configu-
ration items as well as parameters from other Apps. To use this, there is a class attribute called self.config. It
contains a standard Python nested Dictionary.

To get AppDaemon’s config parameters for example:

app_timezone = self.config["time_zone"]

To access any apps parameters, use the class attribute called app_config. This is a Python Dictionary with an entry
for each App, keyed on the App’s name.

other_apps_arg = self.app_config["some_app"]["some_parameter"].

AppDaemon also exposes the configurations from configured plugins. For example, that of the HA plugin allows
accessing configurations from Home Assistant such as the Latitude and Longitude configured in HA. All of the in-
formation available from the Home Assistant /api/config endpoint is available using the get_config() call.
E.g.:

config = self.get_config()
self.log("My current position is {}(Lat), {}(Long)".format(config["latitude"], config[
→˓"longitude"]))

6.22. Getting Information in Apps and Sharing information between Apps 65

AppDaemon Documentation, Release 4.0.7

Using this method, it is also possible to use this function to access configurations of other plugins, from within apps
in a different namespace. This is done by simply passing in the namespace parameter. E.g.:

And finally, it is also possible to use config as a global area for sharing parameters across Apps. Simply add the
required parameters inside the appdaemon section in the appdaemon.yaml file:

logs:
...
appdaemon:

global_var: hello world

Then access it as follows:

my_global_var = self.config["global_var"]

6.23 Development Workflow

Developing Apps is intended to be fairly simple but is an exercise in programming like any other kind of Python pro-
gram. As such, it is expected that apps will contain syntax errors and will generate exceptions during the development
process. AppDaemon makes it very easy to iterate through the development process as it will automatically reload
code that has changed and also will reload code if any of the parameters in the configuration file change as well.

The recommended workflow for development is as follows:

• Open a window and tail the appdaemon.log file

• Open a second window and tail the error.log file

• Open a third window or the editor of your choice for editing the App

With this setup, you will see that every time you write the file, AppDaemon will log the fact and let you know it has
reloaded the App in the appdaemon.log file.

If there is an error in the compilation or a runtime error, this will be directed to the error.log file to enable you to
see the error and correct it. When an error occurs, there will also be a warning message in appdaemon.log to tell
you to check the error log.

6.24 Scheduler Speed

The scheduler has been redesigned in 4.0 with a new tickles algorithm that allows you to specify timed events to the
limit of the host system’s accuracy (this is usually down to the microsecond level).

6.25 Time Travel

OK, time travel sadly isn’t really possible but it can be very useful when testing Apps. For instance, imagine you
have an App that turns a light on every day at sunset. It might be nice to test it without waiting for Sunset - and with
AppDaemon’s “Time Travel” features you can.

6.25.1 Choosing a Start Time

Internally, AppDaemon keeps track of its own time relative to when it was started. This make it possible to start
AppDaemon with a different start time and date to the current time. For instance, to test that sunset App, start

66 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

AppDaemon at a time just before sunset and see if it works as expected. To do this, simply use the “-s” argument on
AppDaemon’s command line. e.g.:

$ apprun -s "2018-23-27 16:30:00"
...
2018-12-27 09:31:20.794106 INFO AppDaemon App initialization complete
2018-23-27 16:30:00.000000 INFO AppDaemon Starting time travel ...
2018-23-27 16:30:00:50.000000 INFO AppDaemon Setting clocks to 2018-23-27
→˓16:30:00
2018-23-27 16:30:00.000000 INFO AppDaemon Time displacement factor 1.0
...

Note the timestamps in the log - AppDaemon believes it is now just before sunset and will process any callbacks
appropriately.

6.25.2 Speeding things up

Some Apps need to run for periods of a day or two for you to test all aspects. This can be time-consuming, but Time
Travel can also help here by speeding uptime. To do this, simply use the -t (timewarp) option on the command line.
This option is a simple multiplier for the speed that time will run. If set to 10, time as far as AppDaemon is concerned
will run 10 times faster than usual. Set it to 0,1, and time will run 10 times slower. A few examples:

Set appdaemon to run 10x faster than normal:

$ appdaemon -t 10

Set appdaemon to run as fast as possible:

$ appdaemon -t 0

The timewarp flag in appdaemon.yaml is an alternative way of changing the speed, and will override the -t
command line setting.

6.25.3 Automatically stopping

AppDaemon can be set to terminate automatically at a specific time. This can be useful if you want to repeatedly rerun
a test, for example, to test that random values are behaving as expected. Simply specify the end time with the -e flag
as follows:

$ appdaemon -e "2016-06-06 10:10:00"
2016-09-06 17:16:00 INFO AppDaemon Version 1.3.2 starting
2016-09-06 17:16:00 INFO Got initial state
2016-09-06 17:16:00 INFO Loading Module: /export/hass/appdaemon_test/conf/test_apps/
→˓sunset.py
..,

The -e flag is most useful when used in conjunction with the -s flag and optionally the -t flag. For example, to run
from just before sunset, for an hour, as fast as possible:

$ appdaemon -s "2016-06-06 19:16:00" -e "2016-06-06 20:16:00" -t 10

6.25. Time Travel 67

AppDaemon Documentation, Release 4.0.7

6.25.4 A Note On Times

Some Apps you write may depend on checking times of events relative to the current time. If you are time travelling
this will not work if you use standard python library calls to get the current time and date etc. For this reason, always
use the AppDamon supplied time(), date() and datetime() calls, documented earlier. These calls will consult
with AppDaemon’s internal time rather than the actual time and give you the correct values.

6.25.5 Other Functions

AppDaemon allows some introspection on its stored schedule and callbacks which may be useful for some applica-
tions. The functions:

• get_scheduler_entries()

• get_callback_entries()

Return the internal data structures, but do not allow them to be modified directly. Their format may change.

6.25.6 About Plugin Disconnections

When a plugin is unable to connect initially with the underlying system, e.g., Home Assistant, it will hold all Apps in
stasis until it initially connects, nothing else will happen, and no initialization routines will be called. If AppDaemon
has been running connected to Home Assistant for a while and the connection is unexpectedly lost, the following will
occur:

• When the plugin first goes down or becomes disconnected, an event called plugin_disconnected will fire

• While disconnected from the plugin, Apps will continue to run

• Schedules will continue to be honored

• Any operation reading locally cached state will succeed

• Any operation requiring a call to the plugin will log a warning and return without attempting to contact hass

When a connection to the plugin is reestablished, all Apps will be restarted and their initialize() routines will
be called.

6.26 RESTFul API Support

AppDaemon supports a simple RESTFul API to enable arbitrary HTTP connections to pass data to Apps and trigger
actions. API Calls must use a content type of application/json, and the response will be JSON encoded. The
RESTFul API is disabled by default, but is enabled by adding an api_port directive to the AppDaemon section of
the configuration file. The API can run http or https if desired, separately from the dashboard.

To call into a specific App, construct a URL, use the regular HADashboard URL, and append /api/appdaemon,
then add the name of the endpoint as registered by the App on the end, for example:

http://192.168.1.20:5050/api/appdaemon/hello_endpoint

This URL will call into an App that registered an endpoint named hello_endpoint.

Within the App, a call must be made to register_endpoint() to tell AppDaemon that the App is expecting calls
on that endpoint. When registering an endpoint, the App supplies a function to be called when a request comes into
that endpoint and an optional name for the endpoint. If not specified, the name will default to the name of the App as
specified in the configuration file.

68 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

Apps can have as many endpoints as required, however, the names must be unique across all of the Apps in an
AppDaemon instance.

It is also possible to remove endpoints with the unregister_endpoint() call, making the endpoints truly dy-
namic and under the control of the App.

Here is an example of an App using the API:

import hassapi as hass

class API(hass.Hass):

def initialize(self):
self.register_endpoint(my_callback, "test_endpoint")

def my_callback(self, data):

self.log(data)

response = {"message": "Hello World"}

return response, 200

The response must be a python structure that can be mapped to JSON, or can be blank, in which case specify "" for
the response. You should also return an HTML status code, that will be reported back to the caller, 200 should be
used for an OK response.

As well as any user specified code, the API can return the following codes:

• 400 - JSON Decode Error

• 401 - Unauthorized

• 404 - App not found

Below is an example of using curl to call into the App shown above:

$ curl -i -X POST -H "Content-Type: application/json" http://192.168.1.20:5050/api/
→˓appdaemon/test_endpoint -d '{"type": "Hello World Test"}'
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 26
Date: Sun, 06 Aug 2017 16:38:14 GMT
Server: Python/3.5 aiohttp/2.2.3

{"message": "Hello World"}hass@Pegasus:~$

6.27 API Security

If you have added a key to the AppDaemon config, AppDaemon will expect to find a header called “x-ad-access” in
the request with a value equal to the configured key. A security key is added for the API with the api_key directive
described in the Installation Documentation

If these conditions are not met, the call will fail with a return code of 401 Not Authorized. Here is a successful
curl example:

6.27. API Security 69

INSTALL.html

AppDaemon Documentation, Release 4.0.7

$ curl -i -X POST -H "x-ad-access: fred" -H "Content-Type: application/json" http://
→˓192.168.1.20:5050/api/appdaemon/api -d '{"type": "Hello World Test"}'
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Content-Length: 26
Date: Sun, 06 Aug 2017 17:30:50 GMT
Server: Python/3.5 aiohttp/2.2.3

{"message": "Hello World"}hass@Pegasus:~$

And an example of a missing key:

$ curl -i -X POST -H "Content-Type: application/json" http://192.168.1.20:5050/api/
→˓appdaemon/api -d '{"type": "Hello World Test"}'
HTTP/1.1 401 Unauthorized
Content-Length: 112
Content-Type: text/plain; charset=utf-8
Date: Sun, 06 Aug 2017 17:30:43 GMT
Server: Python/3.5 aiohttp/2.2.3

<html><head><title>401 Unauthorized</title></head><body><h1>401 Unauthorized</h1>
→˓Error in API Call</body></html>hass@Pegasus:~$

6.28 Alexa Support

AppDaemon is able to use the API support to accept calls from Alexa. Amazon Alexa calls can be directed to AppDae-
mon and arrive as JSON encoded requests. AppDaemon provides several helper functions to assist in understanding
the request and responding appropriately. Since Alexa only allows one URL per skill, the mapping will be 1:1 between
skills and Apps. When constructing the URL in the Alexa Intent, make sure it points to the correct endpoint for the
App you are using for Alexa.

In addition, if you are using API security keys (recommended) you will need to append it to the end of the URL as
follows:

http://<some.host.com>/api/appdaemon/alexa?api_password=<password>

For more information about configuring Alexa Intents, see the Home Assistant Alexa Documentation

When configuring Alexa support for AppDaemon some care is needed. If you are as most people, you are using SSL
to access Home Assistant, there is contention for the use of the SSL port (443) since Alexa does not allow you to
change this. This means that if you want to use AppDaemon with SSL, you will not be able to use Home Assistant
remotely over SSL. The way around this is to use NGINX to remap the specific AppDamon API URL to a different
port, by adding something like this to the config:

location /api/appdaemon/ {
allow all;
proxy_pass http://localhost:5000;
proxy_set_header Host $host;
proxy_redirect http:// http://;

}

Here we see the default port being remapped to port 5000 which is where AppDamon is listening in my setup.

Since each individual Skill has its own URL it is possible to have different skills for Home Assistant and AppDaemon.

70 Chapter 6. Writing AppDaemon Apps

https://home-assistant.io/components/alexa/

AppDaemon Documentation, Release 4.0.7

6.29 Putting it together in an App

The Alexa App is basically just a standard API App that uses Alexa helper functions to understand the incoming
request and format a response to be sent back to Amazon, to describe the spoken response and card for Alexa.

Here is a sample of an Alexa App that can be extended for whatever intents you want to configure.

import hassapi as hass
import random
import globals

class Alexa(hass.Hass):

def initialize(self):
pass

def api_call(self, data):
intent = self.get_alexa_intent(data)

if intent is None:
self.log("Alexa error encountered: {}".format(self.get_alexa_error(data)))
return "", 201

intents = {
"StatusIntent": self.StatusIntent,
"LocateIntent": self.LocateIntent,

}

if intent in intents:
speech, card, title = intents[intent](data)
response = self.format_alexa_response(speech = speech, card = card, title

→˓= title)
self.log("Received Alexa request: {}, answering: {}".format(intent,

→˓speech))
else:

response = self.format_alexa_response(speech = "I'm sorry, the {} does
→˓not exist within AppDaemon".format(intent))

return response, 200

def StatusIntent(self, data):
response = self.HouseStatus()
return response, response, "House Status"

def LocateIntent(self, data):
user = self.get_alexa_slot_value(data, "User")

if user is not None:
if user.lower() == "jack":

response = self.Jack()
elif user.lower() == "andrew":

response = self.Andrew()
elif user.lower() == "wendy":

response = self.Wendy()
elif user.lower() == "brett":

response = "I have no idea where Brett is, he never tells me anything"
else:

(continues on next page)

6.29. Putting it together in an App 71

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

response = "I'm sorry, I don't know who {} is".format(user)
else:

response = "I'm sorry, I don't know who that is"

return response, response, "Where is {}?".format(user)

def HouseStatus(self):

status = "The downstairs temperature is {} degrees fahrenheit,".format(self.
→˓entities.sensor.downstairs_thermostat_temperature.state)

status += "The upstairs temperature is {} degrees fahrenheit,".format(self.
→˓entities.sensor.upstairs_thermostat_temperature.state)

status += "The outside temperature is {} degrees fahrenheit,".format(self.
→˓entities.sensor.side_temp_corrected.state)

status += self.Wendy()
status += self.Andrew()
status += self.Jack()

return status

def Wendy(self):
location = self.get_state(globals.wendy_tracker)
if location == "home":

status = "Wendy is home,"
else:

status = "Wendy is away,"

return status

def Andrew(self):
location = self.get_state(globals.andrew_tracker)
if location == "home":

status = "Andrew is home,"
else:

status = "Andrew is away,"

return status

def Jack(self):
responses = [

"Jack is asleep on his chair",
"Jack just went out bowling with his kitty friends",
"Jack is in the hall cupboard",
"Jack is on the back of the den sofa",
"Jack is on the bed",
"Jack just stole a spot on daddy's chair",
"Jack is in the kitchen looking out of the window",
"Jack is looking out of the front door",
"Jack is on the windowsill behind the bed",
"Jack is out checking on his clown suit",
"Jack is eating his treats",
"Jack just went out for a walk in the neighbourhood",
"Jack is by his bowl waiting for treats"

]

return random.choice(responses)

72 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

6.30 Dialogflow API

Similarly, Dialogflow API for Google home is supported - here is the Google version of the same App. To set up
Dialogflow with your google home refer to the apiai component in home-assistant. Once it is setup you can use the
AppDaemon API as the webhook.

import hassapi as hass
import random
import globals

class Apiai(hass.Hass):

def initialize(self):
pass

def api_call(self, data):
intent = self.get_dialogflow_intent(data)

if intent is None:
self.log("Dialogflow error encountered: Result is empty")
return "", 201

intents = {
"StatusIntent": self.StatusIntent,
"LocateIntent": self.LocateIntent,

}

if intent in intents:
speech = intents[intent](data)
response = self.format_dialogflow_response(speech)
self.log("Received Dialogflow request: {}, answering: {}".format(intent,

→˓speech))
else:

response = self.format_dialogflow_response(speech = "I'm sorry, the {}
→˓does not exist within AppDaemon".format(intent))

return response, 200

def StatusIntent(self, data):
response = self.HouseStatus()
return response

def LocateIntent(self, data):
user = self.get_dialogflow_slot_value(data, "User")

if user is not None:
if user.lower() == "jack":

response = self.Jack()
elif user.lower() == "andrew":

response = self.Andrew()
elif user.lower() == "wendy":

response = self.Wendy()
elif user.lower() == "brett":

response = "I have no idea where Brett is, he never tells me anything"
else:

response = "I'm sorry, I don't know who {} is".format(user)
else:

(continues on next page)

6.30. Dialogflow API 73

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

response = "I'm sorry, I don't know who that is"

return response

def HouseStatus(self):

status = "The downstairs temperature is {} degrees fahrenheit,".format(self.
→˓entities.sensor.downstairs_thermostat_temperature.state)

status += "The upstairs temperature is {} degrees fahrenheit,".format(self.
→˓entities.sensor.upstairs_thermostat_temperature.state)

status += "The outside temperature is {} degrees fahrenheit,".format(self.
→˓entities.sensor.side_temp_corrected.state)

status += self.Wendy()
status += self.Andrew()
status += self.Jack()

return status

def Wendy(self):
location = self.get_state(globals.wendy_tracker)
if location == "home":

status = "Wendy is home,"
else:

status = "Wendy is away,"

return status

def Andrew(self):
location = self.get_state(globals.andrew_tracker)
if location == "home":

status = "Andrew is home,"
else:

status = "Andrew is away,"

return status

def Jack(self):
responses = [

"Jack is asleep on his chair",
"Jack just went out bowling with his kitty friends",
"Jack is in the hall cupboard",
"Jack is on the back of the den sofa",
"Jack is on the bed",
"Jack just stole a spot on daddy's chair",
"Jack is in the kitchen looking out of the window",
"Jack is looking out of the front door",
"Jack is on the windowsill behind the bed",
"Jack is out checking on his clown suit",
"Jack is eating his treats",
"Jack just went out for a walk in the neighbourhood",
"Jack is by his bowl waiting for treats"

]

return random.choice(responses)

74 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

6.31 Plugins

As of version 3.0, AppDaemon has been rewritten to use a pluggable architecture for connection to the systems it
monitors.

It is possible to create plugins that interface with other systems, for instance, MQTT support was recently added and
it would also be possible to connect to other home automation systems, or anything else for that matter, and expose
their operation to AppDaemon and write Apps to monitor and control them.

An interesting caveat of this is that the architecture has been designed so that multiple instances of each plugin can be
configured, meaning for instance that it is possible to connect AppDaemon to 2 or more instances of Home Assistant.

To configure additional plugins of any sort, simply add a new section in the list of plugins in the AppDaemon section.

Here is an example of a plugin section with 2 hass instances and 2 dummy instances:

plugins:
HASS1:
type: hass
ha_key: !secret home_assistant1_key
ha_url: http://192.168.1.20:8123

HASS2:
namespace: hass2
type: hass
ha_key: !secret home_assistant2_key
ha_url: http://192.168.1.21:8123

MQTT:
type: mqtt
namespace: mqtt
client_host: 192.168.1.20
client_port: 1883
client_id: Fred
client_user: homeassistant
client_password: my_password

The type parameter defines which of the plugins are used, and the parameters for each plugin type will be different.
As you can see, the parameters for both hass instances are similar, and it supports all the parameters described in the
installation section of the docs - here I am just using a subset.

6.32 Namespaces

A critical piece of this is the concept of namespaces. Each plugin has an optional namespace directive. If you
have more than 1 plugin of any type, their state is separated into namespaces, and you need to name those namespaces
using the namespace parameter. If you don’t supply a namespace, the namespace defaults to default and this
is the default for all areas of AppDaemon meaning that if you only have one plugin you don’t need to worry about
namespace at all.

In the case above, the first instance had no namespace so its namespace will be called default. The second hass
namespace will be hass2 and so on.

These namespaces can be accessed separately by the various API calls to keep things separate, but individual Apps
can switch between namespaces at will as well as monitor all namespaces in certain calls like listen_state() or
listen_event() by setting the namespace to global.

6.31. Plugins 75

AppDaemon Documentation, Release 4.0.7

6.32.1 Use of Namespaces in Apps

Each App maintains a current namespace at all times. At initialization, this is set to default. This means that if you
only have a single plugin, you don’t need to worry about namespaces at all as everything will just work.

There are 2 ways to work with namespaces in apps. The first is to make a call to set_namespace() whenever you
want to change namespaces. For instance, if in the configuration above, you wanted a particular App to work entirely
with the HASS2 plugin instance, all you would need to do is put the following code at the top of your initialize()
function:

self.set_namespace("hass2")

Note that you should use the value of the namespace parameter, not the name of the plugin section. From that point
on, all state changes, events, service calls, etc. will apply to the HASS2 instance and the HASS1 and DUMMY instances
will be ignored. This is convenient for the case in which you don’t need to switch between namespaces.

In addition, most of the API calls allow you to optionally supply a namespace for them to operate under. This will
override the namespace set by set_namespace() for that call only.

For example:

self.set_namespace("hass2")
Get the entity value from the HASS2 plugin
Since the HASS2 plugin is configured with a namespace of "hass2"
state = self.get_state("light.light1")

Get the entity value from the HASS1 plugin
Since the HASS1 plugin is configured with a namespace of "default"
state = self.get_state("light.light1", namespace="default")

In this way it is possible to use a single App to work with multiple namespaces easily and quickly.

6.32.2 A Note on Callbacks

One important thing to note, when working with namespaces is that callbacks will honor the namespace they were
created with. So if for instance, you create a listen_state() callback with a namespace of default then later
change the namespace to hass1, that callback will continue to listen to the default namespace.

For instance:

self.set_namespace("default")
self.listen_state(callback)
self.set_namespace("hass2")
self.listen_state(callback)
self.set_namespace("dummy1")

This will leave us with 2 callbacks, one listening for state changes in default and one for state changes in hass2,
regardless of the final value of the namespace.

Similarly:

self.set_namespace("dummy2")
self.listen_state(callback, namespace="default")
self.listen_state(callback, namespace="hass2")
self.set_namespace("dummy1")

This code fragment will achieve the same result as above since the namespace is being overridden, and will keep the
same value for that callback regardless of what the namespace is set to.

76 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

6.32.3 User Defined Namespaces

Each plugin has it’s own unique namespace as described above, and they are pretty much in control of those names-
paces. It is possible to set a state in a plugin managed namespace which can be used as a temporary variable or even
as a way of signalling other apps using listen_state() however this is not recommended:

• Plugin managed namespaces may be overwritten at any time by the plugin

• They will likely be overwritten when the plugin restarts even if AppDaemon does not

• They will not survive a restart of AppDaemon because it is regarded as the job of the plugin to reconstruct it’s
state and it knows nothing about any additional variables you have added. Although this technique can still be
useful, for example, to add sensors to Home Assistant, a better alternative for Apps to use are User Defined
Namespaces.

A User Defined Namespace is a new area of storage for entities that is not managed by a plugin. UDMs are guaranteed
not to be changed by any plugin and are available to all apps just the same as a plugin-based namespace. UDMs also
survive AppDaemon restarts and crashes, creating durable storage for saving the information and communicating with
other apps via listen_state() and set_state().

They are configured in the appdaemon.yaml file as follows:

namespaces:
my_namespace:

writeback is safe, performance or hybrid
writeback: safe

my_namespace2:
writeback: performance

my_namespace3:
writeback: hybrid

Here we are defining 3 new namespaces - you can have as many as you want. Their names are my_namespace1,
my_namespace2 and my_namespace3. UDMs are written to disk so that they survive restarts, and this can be
done in 3 different ways, set by the writeback parameter for each UDM. They are:

• safe - the namespace is written to disk every time a change is made so will be up to date even if a crash
happens. The downside is that there is a possible performance impact for systems with slower disks, or that set
state on many UDMs at a time.

• performance - the namespace is written when AD exits, meaning that all processing is in memory for the
best performance. Although this style of UDM will survive a restart, data may be lost if AppDaemon or the host
crashes.

• hybrid - a compromise setting in which the namespaces are saved periodically (once each time around the util-
ity loop, usually once every second- with this setting a maximum of 1 second of data will be lost if AppDaemon
crashes.

6.33 Using Multiple APIs From One App

The way apps are constructed, they inherit from a superclass that contains all the methods needed to access a partic-
ular plugin. This is convenient as it hides a lot of the complexity by automatically selecting the right configuration
information based on namespaces. One drawback of this approach is that an App cannot inherently speak to multiple
plugin types as the API required is different, and the App can only choose one API to inherit from.

To get around this, a function called get_plugin_api() is provided to instantiate API objects to handle multiple
plugins, as a distinct objects, not part of the APPs inheritance. Once the new API object is obtained, you can make
plugin-specific API calls on it directly, as well as call listen_state() on it to listen for state changes specific to
that plugin.

6.33. Using Multiple APIs From One App 77

AppDaemon Documentation, Release 4.0.7

In this case, it is cleaner not to have the App inherit from one or the other specific APIs, and for this reason, the
ADBase class is provided to create an App without any specific plugin API. The App will also use get_ad_api()
to get access to the AppDaemon API for the various scheduler calls.

As an example, this App is built using ADBase, and uses get_plugin_api() to access both HASS and MQTT,
as well as get_ad_api() to access the AppDaemon base functions.

import adbase as ad

class GetAPI(ad.ADBase):

def initialize(self):

Grab an object for the HASS API
hass = self.get_plugin_api("HASS")
Hass API Call
hass.turn_on("light.office")
Listen for state changes for this plugin only
hass.listen_state(my_callback, "light.kitchen")

Grab an object for the MQTT API
mqtt = self.get_plugin_api("MQTT")
Make MQTT API Call
mqtt.mqtt_publish("topic", "Payload"):

Make a scheduler call using the ADBase class
adbase = self.get_ad_api()
handle = adbase.run_in(callback, 20)

By default, each plugin API object has it’s namespace correctly set for that plugin, which makes it much more conve-
nient to handle calls and callbacks form that plugin. This way of working can often be more convenient and clearer
than changing namespaces within apps or on the individual calls, so is the recommended way to handle multiple
plugins of the same or even different types. The AD base API’s namespace defaults to “default”:

Listen for state changes specific to the "HASS" plugin
hass.listen_state(hass_callback, "light.office")
Listen for state changes specific to the "MQTT" plugin
mqtt.listen_state(mqtt_callback, "light.office")
Listen for global state changes
adbase.listen_state(global_callback, namespace="global")

API objects are fairly lightweight and can be created and discarded at will. There may be a slight performance increase
by creating an object for each API in the initialize function and using it throughout the App, but this is likely to be
minimal.

6.34 Custom Constraints

An App can also register its own custom constraints which can then be used in exactly the same way as App level
or callback level constraints. A custom constraint is simply a Python function that returns True or False when
presented with the constraint argument. If it returns True, the constraint is regarded as satisfied, and the callback will
be made (subject to any other constraints also evaluating to True. Likewise, a False return means that the callback
won’t fire. Custom constraints are a handy way to control multiple callbacks that have some complex logic and enable
you to avoid duplicating code in all callbacks.

To use a custom constraint, it is first necessary to register the function to be used to evaluate
it using the register_constraint() API call. Constraints can also be unregistered using the

78 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

deregister_constraint() call, and the list_constraints() call will return a list of currently regis-
tered constraints.

Here is an example of how this all fits together.

We start off with a python function that accepts a value to be evaluated like this:

def is_daylight(self, value):
if self.sun_up():

return True
else:

return False

To use this in a callback level constraint simply use:

self.register_constraint("is_daylight")
handle = self.run_every(self.callback, time, 1, is_daylight=1)

Now callback() will only fire if the sun is up.

Using the value parameter you can parameterize the constraint for more complex behavior and use in different situa-
tions for different callbacks. For instance:

def sun(self, value):
if value == "up":

if self.sun_up():
return True

elif value == "down":
if self.sun_down():
return True

return False

You can use this with 2 separate constraints like so:

self.register_constraint("sun")
handle = self.run_every(self.up_callback, time, 1, sun="up")
handle = self.run_every(self.down_callback, time, 1, sun="down")

6.35 Sequences

AppDaemon supports sequences as a simple way of re-using predefined steps of commands. The initial usecase
for sequences is to allow users to create scenes within AppDaemon, however they are useful for many other things.
Sequences are fairly simple and allow the user to define 2 types of activity:

• A call_service command with arbitrary parameters

• A configurable delay between steps.

In the case of a scene, of course you would not want to use the delay, and would just list all the devices to be switched
on or off, however, if you wanted a light to come on for 30 seconds, you could use a script to turn the light on, wait 30
seconds and then turn it off. Unlike in synchronous apps, delays are fine in scripts as they will not hold the apps_thread
up.

There are 2 types of sequence - predefined sequences and inline sequences.

6.35. Sequences 79

AppDaemon Documentation, Release 4.0.7

6.35.1 Defining a Sequence

A predefined sequence is created by adding a sequence section to your apps.yaml file. If you have apps.yaml split
into multiple files, you can have sequences defined in each one if desired. For clarity, it is strongly recommended that
sequences are created in their own standalone yaml files, ideally in a separate directory from the app argument files.

An example of a simple sequence entry to create a couple of scenes might be:

sequence:
office_on:
name: Office On
steps:
- homeassistant/turn_on:

entity_id: light.office_1
brightness: 254

- homeassistant/turn_on:
entity_id: light.office_2
brightness: 254

office_off:
name: Office Off
steps:
- homeassistant/turn_off:

entity_id: light.office_1
- homeassistant/turn_off:

entity_id: light.office_2

The names of the sequences defined above are sequence.office_on and sequence.office_off. The name
entry is optional and is used to provide a friendly name for HADashboard. The steps entry is simply a list of steps
to be taken. They will be processed in the order defined, however without any delays the steps will be processed
practically instantaneously.

A sequence to turn a light on then off after a delay might look like this:

sequence:
outside_motion_light:
name: Outside Motion
steps:
- homeassistant/turn_on:

entity_id: light.outside
brightness: 254

- sleep: 30
- homeassistant/turn_off:

entity_id: light.outside

If you prefer, you can use YAML’s inline capabilities for a more compact representation that looks better for longer
sequences:

sequence:
outside_motion_light:
name: Outside Motion
steps:
- homeassistant/turn_on: {"entity_id": "light.outside", "brightness": 254}
- sleep: 30
- homeassistant/turn_off: {"entity_id": "light.outside"}

80 Chapter 6. Writing AppDaemon Apps

AppDaemon Documentation, Release 4.0.7

6.35.2 Looping a Sequence

Sequences can be created that will loop forever by adding the value loop: True to the sequence:

sequence:
outside_motion_light:
name: Outside Motion
loop; True
steps:
- homeassistant/turn_on: {"entity_id": "light.outside", "brightness": 254}
- sleep: 30
- homeassistant/turn_off: {"entity_id": "light.outside"}

This sequence once started will loop until either the sequence is canceled, the app is restarted or terminated, or
AppDaemon is shutdown.

6.35.3 Defining a Sequence Call Namespace

By default, a sequence will run on entities in the current namespace, however , the namespace can be specified on a
per call basis if required.

sequence:
office_on:
name: Office On
steps:
- homeassistant/turn_on:

entity_id: light.office_1
brightness: 254
namespace: "hass1"

- homeassistant/turn_on:
entity_id: light.office_2
brightness: 254
namespace: "hass2"

Just like app parameters and code, sequences will be reloaded after any change has been made allowing scenes to be
developed and modified without restarting AppDaemon.

6.35.4 Sequence Commands

In addition to a straightforward service name plus data, sequences can take a few additional commands:

• sleep - pause execution of the sequence for a number of seconds. e.g. sleep: 30 will pause the sequence for 30
seconds

• sequence - run a sub sequence. This must be a predefined sequence, and cannot be an inline sequence. Provide
the entity

name of the sub-sequence to be run, e.g. sequence: sequcene.my_sub_sequence. Sub sequences can be nested arbi-
trarily to any desired level.

6.35.5 Running a Sequence

Once you have the sequence defined, you can run it in one of 2 ways:

• using the self.run_sequence() api call

6.35. Sequences 81

AppDaemon Documentation, Release 4.0.7

• Using a sequence widget in HADashboard

A call to run the above sequence would look like this:

handle = self.run_sequence("sequence.outside_motion_light")

The handle value can be used to terminate a running sequence by supplying it to the cancel_sequence() call.

When an app is terminated or reloaded, all running sequences that it started are immediately terminated. There is no
way to terminate a sequence started using HADashboard.

6.35.6 Inline Sequences

Sequences can be run without the need to predefine them by specifying the steps to the run_sequence() command
like so:

handle = self.run_sequence([
{'light/turn_on': {'entity_id': 'light.office_1', 'brightness': '5', 'color_

→˓name': 'white', 'namespace': 'default'}},
{'sleep': 1},
{'light/turn_off': {'entity_id': 'light.office_1'}},
])

82 Chapter 6. Writing AppDaemon Apps

CHAPTER 7

Community Tutorials

Here is a list of other tutorials that have been created by AppDaemon users:

• AppDaemon For Beginners

• AppDaemon Tutorial #1 Tracker-Notifier

• AppDaemon Tutorial #2 Errorlog Notifications

• AppDaemon Tutorial #3 Utility Functions

• AppDaemon Tutorial #4 Libraries & Interactivity

• Home Presence Appdaemon App

• App #1: Doorbell notification

• App #2: Smart Light

• App #3: Smart Radiator

• App #4: Boiler Alert

• App #5: Smart Radiator (Generic)

• App #6: Window Alert

• App #7: Boiler Temperature Alert

• App #8: Detect a particular sequence of events

Do you have other tutorials? Make a PR :)

– AppDaemon Team

83

https://github.com/ReneTode/My-AppDaemon/tree/master/AppDaemon_for_Beginner
https://community.home-assistant.io/t/appdaemon-tutorial-1-tracker-notifier/12545
https://community.home-assistant.io/t/appdaemon-tutorial-2-errorlog-notifications/12907
https://community.home-assistant.io/t/appdaemon-tutorial-3-utility-functions/13247
https://community.home-assistant.io/t/appdaemon-tutorial-4-libraries-interactivity/14057
https://community.home-assistant.io/t/home-presence-appdaemon-app/66098
https://community.home-assistant.io/t/app-1-doorbell-notification/128934
https://community.home-assistant.io/t/app-2-smart-light/129011
https://community.home-assistant.io/t/app-3-smart-radiator/129095
https://community.home-assistant.io/t/app-4-boiler-alert/129110
https://community.home-assistant.io/t/app-5-smart-radiator-generic/129149
https://community.home-assistant.io/t/app-6-window-alert/129266
https://community.home-assistant.io/t/app-7-boiler-temperature-alert/129300
https://community.home-assistant.io/t/app-8-detect-a-particular-sequence-of-events/129631

AppDaemon Documentation, Release 4.0.7

84 Chapter 7. Community Tutorials

CHAPTER 8

AppDaemon API Reference

A number of api calls are native to AppDaemon and will exist in any App as they are inherited through the plugin API.
If the get_plugin_api() style of declarations is used, these functions will become available via an object created
by the get_ad_api() call:

import adbase as ad
import adapi as adapi

class Test(ad.ADBase):

def initialize(self):

adbase = self.get_ad_api()
handle = self.adbase.run_in(callback, 20)

These calls are documented below.

8.1 App Creation

To create apps based on just the AppDaemon base API, use some code like the following:

import adbase as ad

class MyApp(ad.ADBase):

def initialize(self):

85

AppDaemon Documentation, Release 4.0.7

8.2 Reference

8.2.1 State

get_state(self, entity_id=None, attribute=None, default=None, copy=True, **kwargs)
Gets the state of any component within Home Assistant.

State updates are continuously tracked, so this call runs locally and does not require AppDaemon to call back to
Home Assistant. In other words, states are updated using a push-based approach instead of a pull-based one.

Parameters

• entity_id (str, optional) – This is the name of an entity or device type. If just a
device type is provided, e.g., light or binary_sensor, get_state() will return a dictionary of
all devices of that type, indexed by the entity_id, containing all the state for each entity.
If a fully qualified entity_id is provided, get_state() will return the state attribute
for that entity, e.g., on or off for a light.

• attribute (str, optional) – Name of an attribute within the entity state object. If
this parameter is specified in addition to a fully qualified entity_id, a single value rep-
resenting the attribute will be returned. The value all for attribute has special significance
and will return the entire state dictionary for the specified entity rather than an individual
attribute value.

• default (any, optional) – The value to return when the requested attribute or the
whole entity doesn’t exist (Default: None).

• copy (bool, optional) – By default, a copy of the stored state object is returned.
When you set copy to False, you get the same object as is stored internally by AppDae-
mon. Avoiding the copying brings a small performance gain, but also gives you write-access
to the internal AppDaemon data structures, which is dangerous. Only disable copying when
you can guarantee not to modify the returned state object, e.g., you do read-only operations.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases, it is safe to ignore this parameter.

Returns The entire state of Home Assistant at that given time, if if get_state() is called with
no parameters. This will consist of a dictionary with a key for each entity. Under that key will
be the standard entity state information.

Examples

Get the state of the entire system.

>>> state = self.get_state()

Get the state of all switches in the system.

>>> state = self.get_state("switch")

Get the state attribute of light.office_1.

>>> state = self.get_state("light.office_1")

Get the brightness attribute of light.office_1.

86 Chapter 8. AppDaemon API Reference

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

>>> state = self.get_state("light.office_1", attribute="brightness")

Get the entire state of light.office_1.

>>> state = self.get_state("light.office_1", attribute="all")

set_state(self, entity, **kwargs)
Updates the state of the specified entity.

Parameters

• entity (str) – The fully qualified entity id (including the device type).

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• state – New state value to be set.

• attributes (optional) – Entity’s attributes to be updated.

• namespace (str, optional) – If a namespace is provided, AppDaemon will change
the state of the given entity in the given namespace. On the other hand, if no namespace
is given, AppDaemon will use the last specified namespace or the default namespace. See
the section on namespaces for a detailed description. In most cases, it is safe to ignore this
parameter.

• replace (bool, optional) – If a replace flag is given and set to True and
attributes is provided, AD will attempt to replace its internal entity register with the
newly supplied attributes completely. This can be used to replace attributes in an entity
which are no longer needed. Do take note this is only possible for internal entity state. For
plugin based entities, this is not recommended, as the plugin will mostly replace the new
values, when next it updates.

Returns A dictionary that represents the new state of the updated entity.

Examples

Update the state of an entity.

>>> self.set_state("light.office_1", state="off")

Update the state and attribute of an entity.

>>> self.set_state("light.office_1", state = "on", attributes = {"color_name":
→˓"red"})

Update the state of an entity within the specified namespace.

>>> self.set_state("light.office_1", state="off", namespace ="hass")

listen_state(self, callback, entity=None, **kwargs)
Registers a callback to react to state changes.

This function allows the user to register a callback for a wide variety of state changes.

Parameters

• callback – Function to be invoked when the requested state change occurs. It must
conform to the standard State Callback format documented here

8.2. Reference 87

APPGUIDE.html#namespaces
APPGUIDE.html#state-callbacks

AppDaemon Documentation, Release 4.0.7

• entity (str, optional) – name of an entity or device type. If just a device type is
provided, e.g., light, or binary_sensor. listen_state() will subscribe to state changes
of all devices of that type. If a fully qualified entity_id is provided, listen_state()
will listen for state changes for just that entity.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• attribute (str, optional) – Name of an attribute within the entity state ob-
ject. If this parameter is specified in addition to a fully qualified entity_id.
listen_state() will subscribe to changes for just that attribute within that specific
entity. The new and old parameters in the callback function will be provided with a single
value representing the attribute.

The value all for attribute has special significance and will listen for any state change
within the specified entity, and supply the callback functions with the entire state dictionary
for the specified entity rather than an individual attribute value.

• new (optional) – If new is supplied as a parameter, callbacks will only be made if the
state of the selected attribute (usually state) in the new state match the value of new.

• old (optional) – If old is supplied as a parameter, callbacks will only be made if the
state of the selected attribute (usually state) in the old state match the value of old.

• duration (int, optional) – If duration is supplied as a parameter, the callback
will not fire unless the state listened for is maintained for that number of seconds. This
requires that a specific attribute is specified (or the default of state is used), and should be
used in conjunction with the old or new parameters, or both. When the callback is called,
it is supplied with the values of entity, attr, old, and new that were current at the
time the actual event occurred, since the assumption is that none of them have changed in
the intervening period.

If you use duration when listening for an entire device type rather than a specific entity,
or for all state changes, you may get unpredictable results, so it is recommended that this
parameter is only used in conjunction with the state of specific entities.

• timeout (int, optional) – If timeout is supplied as a parameter, the callback will
be created as normal, but after timeout seconds, the callback will be removed. If activity
for the listened state has occurred that would trigger a duration timer, the duration timer will
still be fired even though the callback has been deleted.

• immediate (bool, optional) – It enables the countdown for a delay parameter to
start at the time, if given. If the duration parameter is not given, the callback runs
immediately. What this means is that after the callback is registered, rather than requiring
one or more state changes before it runs, it immediately checks the entity’s states based
on given parameters. If the conditions are right, the callback runs immediately at the time
of registering. This can be useful if, for instance, you want the callback to be triggered
immediately if a light is already on, or after a duration if given.

If immediate is in use, and new and duration are both set, AppDaemon will check
if the entity is already set to the new state and if so it will start the clock immediately. If
new and duration are not set, immediate will trigger the callback immediately and
report in its callback the new parameter as the present state of the entity. If attribute is
specified, the state of the attribute will be used instead of state. In these cases, old will be
ignored and when the callback is triggered, its state will be set to None.

• oneshot (bool, optional) – If True, the callback will be automatically cancelled
after the first state change that results in a callback.

88 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases, it is safe to ignore this parameter.
The value global for namespace has special significance and means that the callback will
listen to state updates from any plugin.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Sets which thread from the worker pool the callback
will be run by (0 - number of threads -1).

• *kwargs (optional) – Zero or more keyword arguments that will be supplied to the
callback when it is called.

Notes

The old and new args can be used singly or together.

Returns A unique identifier that can be used to cancel the callback if required. Since variables
created within object methods are local to the function they are created in, and in all likelihood,
the cancellation will be invoked later in a different function, it is recommended that handles are
stored in the object namespace, e.g., self.handle.

Examples

Listen for any state change and return the state attribute.

>>> self.handle = self.listen_state(self.my_callback)

Listen for any state change involving a light and return the state attribute.

>>> self.handle = self.listen_state(self.my_callback, "light")

Listen for a state change involving light.office1 and return the state attribute.

>>> self.handle = self.listen_state(self.my_callback, "light.office_1")

Listen for a state change involving light.office1 and return the entire state as a dict.

>>> self.handle = self.listen_state(self.my_callback, "light.office_1", attribute
→˓= "all")

Listen for a change involving the brightness attribute of light.office1 and return the brightness attribute.

>>> self.handle = self.listen_state(self.my_callback, "light.office_1", attribute
→˓= "brightness")

Listen for a state change involving light.office1 turning on and return the state attribute.

>>> self.handle = self.listen_state(self.my_callback, "light.office_1", new = "on
→˓")

Listen for a change involving light.office1 changing from brightness 100 to 200 and return the brightness at-
tribute.

>>> self.handle = self.listen_state(self.my_callback, "light.office_1", attribute
→˓= "brightness", old = "100", new = "200")

8.2. Reference 89

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

Listen for a state change involving light.office1 changing to state on and remaining on for a minute.

>>> self.handle = self.listen_state(self.my_callback, "light.office_1", new = "on
→˓", duration = 60)

Listen for a state change involving light.office1 changing to state on and remaining on for a minute trigger the
delay immediately if the light is already on.

>>> self.handle = self.listen_state(self.my_callback, "light.office_1", new = "on
→˓", duration = 60, immediate = True)

cancel_listen_state(self, handle)
Cancels a listen_state() callback.

This will mean that the App will no longer be notified for the specific state change that has been cancelled.
Other state changes will continue to be monitored.

Parameters handle – The handle returned when the listen_state() call was made.

Returns Boolean.

Examples

>>> self.cancel_listen_state(self.office_light_handle)

info_listen_state(self, handle)
Gets information on state a callback from its handle.

Parameters handle – The handle returned when the listen_state() call was made.

Returns The values supplied for entity, attribute, and kwargs when the callback was ini-
tially created.

Examples

>>> entity, attribute, kwargs = self.info_listen_state(self.handle)

8.2.2 Time

parse_utc_string(self, utc_string)
Converts a UTC to its string representation.

Parameters utc_string (str) – A string that contains a date and time to convert.

Returns An POSIX timestamp that is equivalent to the date and time contained in utc_string.

get_tz_offset(self)
Returns the timezone difference between UTC and Local Time in minutes.

convert_utc(utc)
Gets a datetime object for the specified UTC.

Home Assistant provides timestamps of several different sorts that may be used to gain additional insight into
state changes. These timestamps are in UTC and are coded as ISO 8601 combined date and time strings. This
function will accept one of these strings and convert it to a localised Python datetime object representing the
timestamp.

90 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

Parameters utc – An ISO 8601 encoded date and time string in the following format: 2016-07-
13T14:24:02.040658-04:00

Returns A localised Python datetime object representing the timestamp.

sun_up(self)
Determines if the sun is currently up.

Returns True if the sun is up, False otherwise.

Return type bool

Examples

>>> if self.sun_up():
>>> #do something

sun_down(self)
Determines if the sun is currently down.

Returns True if the sun is down, False otherwise.

Return type bool

Examples

>>> if self.sun_down():
>>> #do something

parse_time(self, time_str, name=None, aware=False)
Creates a time object from its string representation.

This functions takes a string representation of a time, or sunrise, or sunset offset and converts it to a datetime.time
object.

Parameters

• time_str (str) – A representation of the time in a string format with one of the following
formats:

a. HH:MM:SS - the time in Hours Minutes and Seconds, 24 hour format.

b. sunrise|sunset [+|- HH:MM:SS] - time of the next sunrise or sunset with
an optional positive or negative offset in Hours Minutes and seconds.

• name (str, optional) – Name of the calling app or module. It is used only for logging
purposes.

• aware (bool, optional) – If True the created time object will be aware of timezone.

Returns A time object, representing the time given in the time_str argument.

Examples

>>> self.parse_time("17:30:00")
17:30:00

8.2. Reference 91

AppDaemon Documentation, Release 4.0.7

>>> time = self.parse_time("sunrise")
04:33:17

>>> time = self.parse_time("sunset + 00:30:00")
19:18:48

>>> time = self.parse_time("sunrise + 01:00:00")
05:33:17

parse_datetime(self, time_str, name=None, aware=False)
Creates a datetime object from its string representation.

This function takes a string representation of a date and time, or sunrise, or sunset offset and converts it to a
datetime object.

Parameters

• time_str (str) – A string representation of the datetime with one of the following for-
mats:

a. YY-MM-DD-HH:MM:SS - the date and time in Year, Month, Day, Hours, Minutes,
and Seconds, 24 hour format.

b. HH:MM:SS - the time in Hours Minutes and Seconds, 24 hour format.

c. sunrise|sunset [+|- HH:MM:SS] - time of the next sunrise or sunset with
an optional positive or negative offset in Hours Minutes and seconds.

If the HH:MM:SS format is used, the resulting datetime object will have today’s date.

• name (str, optional) – Name of the calling app or module. It is used only for logging
purposes.

• aware (bool, optional) – If True the created datetime object will be aware of time-
zone.

Returns A datetime object, representing the time and date given in the time_str argument.

Examples

>>> self.parse_datetime("2018-08-09 17:30:00")
2018-08-09 17:30:00

>>> self.parse_datetime("17:30:00")
2019-08-15 17:30:00

>>> self.parse_datetime("sunrise")
2019-08-16 05:33:17

>>> self.parse_datetime("sunset + 00:30:00")
2019-08-16 19:18:48

>>> self.parse_datetime("sunrise + 01:00:00")
2019-08-16 06:33:17

get_now(self)
Returns the current Local Date and Time.

92 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

Examples

>>> self.get_now()
2019-08-16 21:17:41.098813+00:00

get_now_ts(self)
Returns the current Local Timestamp.

Examples

>>> self.get_now_ts()
1565990318.728324

now_is_between(self, start_time, end_time, name=None)
Determines is the current time is within the specified start and end times.

This function takes two string representations of a time, or sunrise or sunset offset and returns true if
the current time is between those 2 times. Its implementation can correctly handle transitions across midnight.

Parameters

• start_time (str) – A string representation of the start time.

• end_time (str) – A string representation of the end time.

• name (str, optional) – Name of the calling app or module. It is used only for logging
purposes.

Returns True if the current time is within the specified start and end times, False otherwise.

Return type bool

Notes

The string representation of the start_time and end_time should follows one of these formats:

a. HH:MM:SS - the time in Hours Minutes and Seconds, 24 hour format.

b. sunrise|sunset [+|- HH:MM:SS]- time of the next sunrise or sunset with an optional
positive or negative offset in Hours Minutes, and Seconds.

Examples

>>> if self.now_is_between("17:30:00", "08:00:00"):
>>> #do something

>>> if self.now_is_between("sunset - 00:45:00", "sunrise + 00:45:00"):
>>> #do something

sunrise(self, aware=False)
Returns a datetime object that represents the next time Sunrise will occur.

Parameters aware (bool, optional) – Specifies if the created datetime object will be aware
of timezone or not.

8.2. Reference 93

AppDaemon Documentation, Release 4.0.7

Examples

>>> self.sunrise()
2019-08-16 05:33:17

sunset(self, aware=False)
Returns a datetime object that represents the next time Sunset will occur.

Parameters aware (bool, optional) – Specifies if the created datetime object will be aware
of timezone or not.

Examples

>>> self.sunset()
2019-08-16 19:48:48

time(self)
Returns a localised time object representing the current Local Time.

Use this in preference to the standard Python ways to discover the current time, especially when using the “Time
Travel” feature for testing.

Examples

>>> self.time()
20:15:31.295751

datetime(self, aware=False)
Returns a datetime object representing the current Local Date and Time.

Use this in preference to the standard Python ways to discover the current datetime, especially when using the
“Time Travel” feature for testing.

Parameters aware (bool, optional) – Specifies if the created datetime object will be aware
of timezone or not.

Examples

>>> self.datetime()
2019-08-15 20:15:55.549379

date(self)
Returns a localised date object representing the current Local Date.

Use this in preference to the standard Python ways to discover the current date, especially when using the “Time
Travel” feature for testing.

Examples

>>> self.date()
2019-08-15

94 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

get_timezone(self)
Returns the current time zone.

8.2.3 Scheduler

timer_running(self, handle)
Checks if a previously created timer is still running.

Parameters handle – A handle value returned from the original call to create the timer.

Returns Boolean.

Examples

>>> self.timer_running(handle)

cancel_timer(self, handle)
Cancels a previously created timer.

Parameters handle – A handle value returned from the original call to create the timer.

Returns Boolean.

Examples

>>> self.cancel_timer(handle)

info_timer(self, handle)
Gets information on a scheduler event from its handle.

Parameters handle – The handle returned when the scheduler call was made.

Returns

time - datetime object representing the next time the callback will be fired

interval - repeat interval if applicable, 0 otherwise.

kwargs - the values supplied when the callback was initially created.

or None - if handle is invalid or timer no longer exists.

Examples

>>> time, interval, kwargs = self.info_timer(handle)

run_in(self, callback, delay, **kwargs)
Runs the callback in a defined number of seconds.

This is used to add a delay, for instance, a 60 second delay before a light is turned off after it has been triggered
by a motion detector. This callback should always be used instead of time.sleep() as discussed previously.

Parameters

• callback – Function to be invoked when the requested state change occurs. It must
conform to the standard Scheduler Callback format documented here.

8.2. Reference 95

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 4.0.7

• delay (int) – Delay, in seconds before the callback is invoked.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Returns A handle that can be used to cancel the timer.

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

Examples

Run the specified callback after 10 seconds.

>>> self.handle = self.run_in(self.run_in_c, 10)

Run the specified callback after 10 seconds with a keyword arg (title).

>>> self.handle = self.run_in(self.run_in_c, 5, title = "run_in5")

run_once(self, callback, start, **kwargs)
Runs the callback once, at the specified time of day.

Parameters

• callback – Function to be invoked at the specified time of day. It must conform to the
standard Scheduler Callback format documented here.

• start – Should be either a Python time object or a parse_time() formatted string
that specifies when the callback will occur. If the time specified is in the past, the callback
will occur the next day at the specified time.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

96 Chapter 8. AppDaemon API Reference

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 4.0.7

Returns A handle that can be used to cancel the timer.

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

Examples

Run at 4pm today, or 4pm tomorrow if it is already after 4pm.

>>> runtime = datetime.time(16, 0, 0)
>>> handle = self.run_once(self.run_once_c, runtime)

Run today at 10:30 using the parse_time() function.

>>> handle = self.run_once(self.run_once_c, "10:30:00")

Run at sunset.

>>> handle = self.run_once(self.run_once_c, "sunset")

Run an hour after sunrise.

>>> handle = self.run_once(self.run_once_c, "sunrise + 01:00:00")

run_at(self, callback, start, **kwargs)
Runs the callback once, at the specified time of day.

Parameters

• callback – Function to be invoked at the specified time of day. It must conform to the
standard Scheduler Callback format documented here.

• start – Should be either a Python time object or a parse_time() formatted string
that specifies when the callback will occur.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Returns A handle that can be used to cancel the timer.

8.2. Reference 97

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 4.0.7

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

The run_at() function will raise an exception if the specified time is in the past.

Examples

Run at 4pm today.

>>> runtime = datetime.time(16, 0, 0)
>>> today = datetime.date.today()
>>> event = datetime.datetime.combine(today, runtime)
>>> handle = self.run_at(self.run_at_c, event)

Run today at 10:30 using the parse_time() function.

>>> handle = self.run_at(self.run_at_c, "10:30:00")

Run on a specific date and time.

>>> handle = self.run_at(self.run_at_c, "2018-12-11 10:30:00")

Run at the next sunset.

>>> handle = self.run_at(self.run_at_c, "sunset")

Run an hour after the next sunrise.

>>> handle = self.run_at(self.run_at_c, "sunrise + 01:00:00")

run_daily(self, callback, start, **kwargs)
Runs the callback at the same time every day.

Parameters

• callback – Function to be invoked every day at the specified time. It must conform to the
standard Scheduler Callback format documented here.

• start – Should be either a Python time object or a parse_time() formatted string
that specifies when the callback will occur. If the time specified is in the past, the callback
will occur the next day at the specified time. When specifying sunrise or sunset relative
times using the parse_datetime() format, the time of the callback will be adjusted
every day to track the actual value of sunrise or sunset.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

98 Chapter 8. AppDaemon API Reference

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 4.0.7

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Returns A handle that can be used to cancel the timer.

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

Examples

Run daily at 7pm.

>>> runtime = datetime.time(19, 0, 0)
>>> self.run_daily(self.run_daily_c, runtime)

Run at 10:30 every day using the parse_time() function.

>>> handle = self.run_daily(self.run_daily_c, "10:30:00")

Run every day at sunrise.

>>> handle = self.run_daily(self.run_daily_c, "sunrise")

Run every day an hour after sunset.

>>> handle = self.run_daily(self.run_daily_c, "sunset + 01:00:00")

run_hourly(self, callback, start, **kwargs)
Runs the callback at the same time every hour.

Parameters

• callback – Function to be invoked every hour at the specified time. It must conform to
the standard Scheduler Callback format documented here.

• start – A Python time object that specifies when the callback will occur, the hour com-
ponent of the time object is ignored. If the time specified is in the past, the callback will
occur the next hour at the specified time. If time is not supplied, the callback will start
an hour from the time that run_hourly() was executed.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Returns A handle that can be used to cancel the timer.

8.2. Reference 99

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 4.0.7

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

Examples

Run every hour, on the hour.

>>> runtime = datetime.time(0, 0, 0)
>>> self.run_hourly(self.run_hourly_c, runtime)

run_minutely(self, callback, start, **kwargs)
Runs the callback at the same time every minute.

Parameters

• callback – Function to be invoked every minute. It must conform to the standard Sched-
uler Callback format documented here.

• start – A Python time object that specifies when the callback will occur, the hour and
minute components of the time object are ignored. If the time specified is in the past, the
callback will occur the next minute at the specified time. If time is not supplied, the
callback will start a minute from the time that run_minutely() was executed.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Returns A handle that can be used to cancel the timer.

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

Examples

Run every minute on the minute.

>>> time = datetime.time(0, 0, 0)
>>> self.run_minutely(self.run_minutely_c, time)

run_every(self, callback, start, interval, **kwargs)
Runs the callback with a configurable delay starting at a specific time.

Parameters

100 Chapter 8. AppDaemon API Reference

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 4.0.7

• callback – Function to be invoked when the time interval is reached. It must conform to
the standard Scheduler Callback format documented here.

• start – A Python datetime object that specifies when the initial callback will occur, or
can take the now string alongside an added offset. If given in the past, it will be executed in
the next interval time.

• interval – Frequency (expressed in seconds) in which the callback should be executed.

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Keyword Arguments

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

Returns A handle that can be used to cancel the timer.

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

Examples

Run every 17 minutes starting in 2 hours time.

>>> self.run_every(self.run_every_c, time, 17 * 60)

Run every 10 minutes starting now.

>>> self.run_every(self.run_every_c, "now", 10 * 60)

Run every 5 minutes starting now plus 5 seconds.

>>> self.run_every(self.run_every_c, "now+5", 5 * 60)

run_at_sunset(self, callback, **kwargs)
Runs a callback every day at or around sunset.

Parameters

• callback – Function to be invoked at or around sunset. It must conform to the standard
Scheduler Callback format documented here.

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Keyword Arguments

• offset (int, optional) – The time in seconds that the callback should be delayed
after sunset. A negative value will result in the callback occurring before sunset. This
parameter cannot be combined with random_start or random_end.

8.2. Reference 101

APPGUIDE.html#about-schedule-callbacks
APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 4.0.7

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

Returns A handle that can be used to cancel the timer.

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

Examples

Example using timedelta.

>>> self.run_at_sunset(self.sun, offset = datetime.timedelta(minutes = -45).total_
→˓seconds())

Or you can just do the math yourself.

>>> self.run_at_sunset(self.sun, offset = 30 * 60)

Run at a random time +/- 60 minutes from sunset.

>>> self.run_at_sunset(self.sun, random_start = -60*60, random_end = 60*60)

Run at a random time between 30 and 60 minutes before sunset.

>>> self.run_at_sunset(self.sun, random_start = -60*60, random_end = 30*60)

run_at_sunrise(self, callback, **kwargs)
Runs a callback every day at or around sunrise.

Parameters

• callback – Function to be invoked at or around sunrise. It must conform to the standard
Scheduler Callback format documented here.

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Keyword Arguments

• offset (int, optional) – The time in seconds that the callback should be delayed
after sunrise. A negative value will result in the callback occurring before sunrise. This
parameter cannot be combined with random_start or random_end.

• random_start (int) – Start of range of the random time.

• random_end (int) – End of range of the random time.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

102 Chapter 8. AppDaemon API Reference

APPGUIDE.html#about-schedule-callbacks

AppDaemon Documentation, Release 4.0.7

Returns A handle that can be used to cancel the timer.

Notes

The random_start value must always be numerically lower than random_end value, they can be negative
to denote a random offset before and event, or positive to denote a random offset after an event.

Examples

Run 45 minutes before sunset.

>>> self.run_at_sunrise(self.sun, offset = datetime.timedelta(minutes = -45).
→˓total_seconds())

Or you can just do the math yourself.

>>> self.run_at_sunrise(self.sun, offset = 30 * 60)

Run at a random time +/- 60 minutes from sunrise.

>>> self.run_at_sunrise(self.sun, random_start = -60*60, random_end = 60*60)

Run at a random time between 30 and 60 minutes before sunrise.

>>> self.run_at_sunrise(self.sun, random_start = -60*60, random_end = 30*60)

8.2.4 Service

register_service(self, service, cb, **kwargs)
Registers a service that can be called from other apps, the REST API and the Event Stream

Using this function, an App can register a function to be available in the service registry. This will automatically
make it available to other apps using the call_service() API call, as well as publish it as a service in the REST
API and make it available to the call_service command in the event stream.

Parameters

• service – Name of the service, in the format domain/service. If the domain does not exist
it will be created

• cb – A reference to the function to be called when the service is requested. This function
may be a regular function, or it may be async. Note that if it is an async function, it will run
on AppDaemon’s main loop meaning that any issues with the service could result in a delay
of AppDaemon’s core functions.

Returns None

Examples

>>> self.register_service("myservices/service1", mycallback)

list_services(self, **kwargs)
List all services available within AD

Using this function, an App can request all available services within AD

8.2. Reference 103

AppDaemon Documentation, Release 4.0.7

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• **kwargs – Each service has different parameter requirements. This argument allows you
to specify a comma-separated list of keyword value pairs, e.g., namespace = global.

• namespace (str, optional) – If a namespace is provided, AppDaemon will request
the services within the given namespace. On the other hand, if no namespace is given,
AppDaemon will use the last specified namespace or the default namespace. To get all
services across AD, pass global. See the section on namespaces for a detailed description.
In most cases, it is safe to ignore this parameter.

Returns All services within the requested namespace

Examples

>>> self.list_services(namespace="global")

call_service(self, service, **kwargs)
Calls a Service within AppDaemon.

This function can call any service and provide any required parameters. By default, there are standard services
that can be called within AD. Other services that can be called, are dependent on the plugin used, or those
registered by individual apps using the register_service api. In a future release, all available services can be
found using AD’s Admin UI. For listed services, the part before the first period is the domain, and the part
after is the ‘‘service name‘. For instance, light/turn_on has a domain of light and a service name of turn_on.

Parameters

• service (str) – The service name.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• **kwargs – Each service has different parameter requirements. This argument allows you
to specify a comma-separated list of keyword value pairs, e.g., entity_id = light.office_1.
These parameters will be different for every service and can be discovered using the devel-
oper tools. Most all service calls require an entity_id.

• namespace (str, optional) – If a namespace is provided, AppDaemon will change
the state of the given entity in the given namespace. On the other hand, if no namespace
is given, AppDaemon will use the last specified namespace or the default namespace. See
the section on namespaces for a detailed description. In most cases, it is safe to ignore this
parameter.

Returns Result of the call_service function if any

Examples

HASS

>>> self.call_service("light/turn_on", entity_id = "light.office_lamp", color_
→˓name = "red")
>>> self.call_service("notify/notify", title = "Hello", message = "Hello World")

MQTT

104 Chapter 8. AppDaemon API Reference

APPGUIDE.html#namespaces
APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

>>> call_service("mqtt/subscribe", topic="homeassistant/living_room/light", qos=2)
>>> call_service("mqtt/publish", topic="homeassistant/living_room/light", payload=
→˓"on")

Utility

>>> call_service("app/restart", app="notify_app", namespace="appdaemon")
>>> call_service("app/stop", app="lights_app", namespace="appdaemon")
>>> call_service("app/reload", namespace="appdaemon")

For Utility, it is important that the namespace arg is set to appdaemon as no app can work within that names-
pace. If not namespace is specified, calling this function will rise an error.

8.2.5 Sequence

run_sequence(self, sequence, **kwargs)
Run an AppDaemon Sequence. Sequences are defined in a valid apps.yaml file or inline, and are sequences of
service calls.

Parameters

• sequence – The sequence name, referring to the correct entry in apps.yaml, or a dict
containing actual commands to run

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – If a namespace is provided, AppDae-
mon will change the state of the given entity in the given namespace. On the other hand, if no
namespace is given, AppDaemon will use the last specified namespace or the default namespace.
See the section on namespaces for a detailed description. In most cases, it is safe to ignore this
parameter.

Returns A handle that can be used with cancel_sequence() to terminate the script.

Examples

Run a yaml-defined sequence called “sequence.front_room_scene”.

>>> handle = self.run_sequence("sequence.front_room_scene")

Run an inline sequence.

>>> handle = self.run_sequence([{"light/turn_on": {"entity_id": "light.office_1"}}
→˓, {"sleep": 5}, {"light.turn_off":
{"entity_id": "light.office_1"}}])

cancel_sequence(self, handle)
Cancel an AppDaemon Sequence.

Parameters handle – The handle returned by the run_sequence() call

Returns None.

8.2. Reference 105

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

Examples

>>> self.run_sequence(handle)

8.2.6 Events

listen_event(self, callback, event=None, **kwargs)
Registers a callback for a specific event, or any event.

Parameters

• callback – Function to be invoked when the event is fired. It must conform to the standard
Event Callback format documented here

• event (optional) – Name of the event to subscribe to. Can be a standard
Home Assistant event such as service_registered or an arbitrary custom event such as
“MODE_CHANGE”. If no event is specified, listen_event() will subscribe to all events.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• oneshot (bool, optional) – If True, the callback will be automatically cancelled
after the first state change that results in a callback.

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases, it is safe to ignore this parameter.
The value global for namespace has special significance, and means that the callback will
listen to state updates from any plugin.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

• timeout (int, optional) – If timeout is supplied as a parameter, the callback will
be created as normal, but after timeout seconds, the callback will be removed.

• **kwargs (optional) – One or more keyword value pairs representing App specific
parameters to supply to the callback. If the keywords match values within the event data,
they will act as filters, meaning that if they don’t match the values, the callback will not fire.

As an example of this, a Minimote controller when activated will generate an event called
zwave.scene_activated, along with 2 pieces of data that are specific to the event - entity_id
and scene. If you include keyword values for either of those, the values supplied to the
listen_event() call must match the values in the event or it will not fire. If the keywords do
not match any of the data in the event they are simply ignored.

Filtering will work with any event type, but it will be necessary to figure out the data asso-
ciated with the event to understand what values can be filtered on. This can be achieved by
examining Home Assistant’s logfiles when the event fires.

Returns A handle that can be used to cancel the callback.

Examples

Listen all “MODE_CHANGE” events.

106 Chapter 8. AppDaemon API Reference

APPGUIDE.html#about-event-callbacks
APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

>>> self.listen_event(self.mode_event, "MODE_CHANGE")

Listen for a minimote event activating scene 3.

>>> self.listen_event(self.generic_event, "zwave.scene_activated", scene_id = 3)

Listen for a minimote event activating scene 3 from a specific minimote.

>>> self.listen_event(self.generic_event, "zwave.scene_activated", entity_id =
→˓"minimote_31", scene_id = 3)

cancel_listen_event(self, handle)
Cancels a callback for a specific event.

Parameters handle – A handle returned from a previous call to listen_event().

Returns Boolean.

Examples

>>> self.cancel_listen_event(handle)

info_listen_event(self, handle)
Gets information on an event callback from its handle.

Parameters handle – The handle returned when the listen_event() call was made.

Returns The values (service, kwargs) supplied when the callback was initially created.

Examples

>>> service, kwargs = self.info_listen_event(handle)

fire_event(self, event, **kwargs)
Fires an event on the AppDaemon bus, for apps and plugins.

Parameters

• event – Name of the event. Can be a standard Home Assistant event such as ser-
vice_registered or an arbitrary custom event such as “MODE_CHANGE”.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases, it is safe to ignore this parameter.

• **kwargs (optional) – Zero or more keyword arguments that will be supplied as part
of the event.

Returns None.

Examples

>>> self.fire_event("MY_CUSTOM_EVENT", jam="true")

8.2. Reference 107

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

8.2.7 Logging

log(self, msg, *args, **kwargs)
Logs a message to AppDaemon’s main logfile.

Parameters

• msg (str) – The message to log.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• level (str, optional) – The log level of the message - takes a string representing the
standard logger levels (Default: "WARNING").

• ascii_encode (bool, optional) – Switch to disable the encoding of all log mes-
sages to ascii. Set this to true if you want to log UTF-8 characters (Default: True).

• log (str, optional) – Send the message to a specific log, either system or
user_defined. System logs are main_log, error_log, diag_log or access_log.
Any other value in use here must have a corresponding user-defined entity in the logs
section of appdaemon.yaml.

• stack_info (bool, optional) – If True the stack info will included.

Returns None.

Examples

Log a message to the main logfile of the system.

>>> self.log("Log Test: Parameter is %s", some_variable)

Log a message to the specified logfile.

>>> self.log("Log Test: Parameter is %s", some_variable, log="test_log")

Log a message with error-level to the main logfile of the system.

>>> self.log("Log Test: Parameter is %s", some_variable, level = "ERROR")

Log a message using placeholders to the main logfile of the system.

>>> self.log("Line: __line__, module: __module__, function: __function__, Msg:
→˓Something bad happened")

Log a WARNING message (including the stack info) to the main logfile of the system.

>>> self.log("Stack is", some_value, level="WARNING", stack_info=True)

error(self, msg, *args, **kwargs)
Logs a message to AppDaemon’s error logfile.

Parameters

• msg (str) – The message to log.

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

108 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

• level (str, optional) – The log level of the message - takes a string representing the
standard logger levels.

• ascii_encode (bool, optional) – Switch to disable the encoding of all log mes-
sages to ascii. Set this to true if you want to log UTF-8 characters (Default: True).

• log (str, optional) – Send the message to a specific log, either system or
user_defined. System logs are main_log, error_log, diag_log or access_log.
Any other value in use here must have a corresponding user-defined entity in the logs
section of appdaemon.yaml.

Returns None.

Examples

Log an error message to the error logfile of the system.

>>> self.error("Some Warning string")

Log an error message with critical-level to the error logfile of the system.

>>> self.error("Some Critical string", level = "CRITICAL")

listen_log(self, callback, level=’INFO’, **kwargs)
Registers the App to receive a callback every time an App logs a message.

Parameters

• callback (function) – Function to be called when a message is logged.

• level (str) – Logging level to be used - lower levels will not be forwarded to the app
(Default: "INFO").

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• log (str, optional) – Name of the log to listen to, default is all logs. The name should
be one of the 4 built in types main_log, error_log, diag_log or access_log or
a user defined log entry.

• pin (bool, optional) – If True, the callback will be pinned to a particular thread.

• pin_thread (int, optional) – Specify which thread from the worker pool the call-
back will be run by (0 - number of threads -1).

Returns A unique identifier that can be used to cancel the callback if required. Since variables
created within object methods are local to the function they are created in, and in all likelihood,
the cancellation will be invoked later in a different function, it is recommended that handles are
stored in the object namespace, e.g., self.handle.

Examples

Listen to all WARNING log messages of the system.

>>> self.handle = self.listen_log(self.cb, "WARNING")

Sample callback:

8.2. Reference 109

AppDaemon Documentation, Release 4.0.7

>>> def log_message(self, name, ts, level, type, message, kwargs):

Listen to all WARNING log messages of the main_log.

>>> self.handle = self.listen_log(self.cb, "WARNING", log="main_log")

Listen to all WARNING log messages of a user-defined logfile.

>>> self.handle = self.listen_log(self.cb, "WARNING", log="my_custom_log")

cancel_listen_log(self, handle)
Cancels the log callback for the App.

Parameters handle – The handle returned when the listen_log call was made.

Returns Boolean.

Examples

>>> self.cancel_listen_log(handle)

get_main_log(self)
Returns the underlying logger object used for the main log.

Examples

Log a critical message to the main logfile of the system.

>>> log = self.get_main_log()
>>> log.critical("Log a critical error")

get_error_log(self)
Returns the underlying logger object used for the error log.

Examples

Log an error message to the error logfile of the system.

>>> error_log = self.get_error_log()
>>> error_log.error("Log an error", stack_info=True, exc_info=True)

get_user_log(self, log)
Gets the specified-user logger of the App.

Parameters log (str) – The name of the log you want to get the underlying logger object from,
as described in the logs section of appdaemon.yaml.

Returns The underlying logger object used for the error log.

Examples

Log an error message to a user-defined logfile.

110 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

>>> log = self.get_user_log("test_log")
>>> log.error("Log an error", stack_info=True, exc_info=True)

set_log_level(self, level)
Sets a specific log level for the App.

Parameters level (str) – Log level.

Returns None.

Notes

Supported log levels: INFO, WARNING, ERROR, CRITICAL, DEBUG, NOTSET.

Examples

>>> self.set_log_level("DEBUG")

set_error_level(self, level)
Sets the log level to send to the error logfile of the system.

Parameters level (str) – Error level.

Returns None.

Notes

Supported log levels: INFO, WARNING, ERROR, CRITICAL, DEBUG, NOTSET.

8.2.8 Dashboard

dash_navigate(self, target, timeout=-1, ret=None, sticky=0, deviceid=None, dashid=None)
Forces all connected Dashboards to navigate to a new URL.

Parameters

• target (str) – Name of the new Dashboard to navigate to (e.g., /SensorPanel). Note
that this value is not a URL.

• timeout (int) – Length of time to stay on the new dashboard before returning to the
original. This argument is optional and if not specified, the navigation will be permanent.
Note that if there is a click or touch on the new panel before the timeout expires, the timeout
will be cancelled.

• ret (str) – Dashboard to return to after the timeout has elapsed.

• sticky (int) – Specifies whether or not to return to the original dashboard after it has
been clicked on. The default behavior (sticky=0) is to remain on the new dashboard if
clicked, or return to the original otherwise. By using a different value (sticky= 5), clicking
the dashboard will extend the amount of time (in seconds), but it will return to the original
dashboard after a period of inactivity equal to timeout.

• deviceid (str) – If set, only the device which has the same deviceid will navigate.

8.2. Reference 111

AppDaemon Documentation, Release 4.0.7

• dashid (str) – If set, all devices currently on a dashboard which the title contains the
substring dashid will navigate. ex: if dashid is “kichen”, it will match devices which are on
“kitchen lights”, “kitchen sensors”, “ipad - kitchen”, etc.

Returns None.

Examples

Switch to AlarmStatus Panel then return to current panel after 10 seconds.

>>> self.dash_navigate("/AlarmStatus", timeout=10)

Switch to Locks Panel then return to Main panel after 10 seconds.

>>> self.dash_navigate("/Locks", timeout=10, ret="/SensorPanel")

8.2.9 Namespace

set_namespace(self, namespace)
Sets a new namespace for the App to use from that point forward.

Parameters namespace (str) – Name of the new namespace

Returns None.

Examples

>>> self.set_namespace("hass1")

get_namespace(self)
Returns the App’s namespace.

list_namespaces(self)
Returns a list of available namespaces.

Examples

>>> self.list_namespaces()

save_namespace(self, **kwargs)
Saves entities created in user-defined namespaces into a file.

This way, when AD restarts these entities will be reloaded into AD with its previous states within the namespace.
This can be used as a basic form of non-volatile storage of entity data. Depending on the configuration of the
namespace, this function can be setup to constantly be running automatically or only when AD shutdown. This
function also allows for users to manually execute the command as when needed.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns None.

112 Chapter 8. AppDaemon API Reference

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

Examples

Save all entities of the default namespace.

>>> self.save_namespace()

8.2.10 Services

Note: A service call always uses the app’s default namespace. Although namespaces allow a new and easy way to
work with multiple namespaces from within a single App, it is essential to understand how they work before using
them in service’s calls. See the section on namespaces for a detailed description.

AppDaemon has a predefined list of namespaces that can be used only for particular services. Listed below are the
services by namespace.

admin namespace only:

app/create

Used to create a new app. For this service to be used, the module must be existing and provided with the module’s
class. If no app name is given, the module name will be used as the app’s name by default. The service call also
accepts app_file if wanting to create the app within a certain yaml file. Or app_dir, if wanting the created app’s
yaml file within a certain directory. If no file or directory is given, by default the app yaml file will be generated in a
directory ad_apps, using the app’s name. It should be noted that app_dir and app_file when specified, will be
created within the AD’s apps directory.

app/edit

Used to edit an existing app. This way, an app’ args can be edited in realtime with new args

>>> self.call_service("app/edit", app="light_app", module="light_system", namespace=
→˓"admin")

app/remove

Used to remove an existing app. This way, an existing app will be deleted. If the app is the last app in the yaml file,
the file will be delected

>>> self.call_service("app/remove", app="light_app", namespace="admin")

app/start

Starts an app that has been terminated. The app name arg is required.

>>> self.call_service("app/start", app="light_app", namespace="admin")

app/stop

Stops a running app. The app name arg is required.

>>> self.call_service("app/stop", app="light_app", namespace="admin")

app/restart

Restarts a running app. This service basically stops and starts the app. The app name arg is required.

>>> self.call_service("app/restart", app="light_app", namespace="admin")

8.2. Reference 113

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

app/reload

Checks for an app update. Useful if AD is running in production mode, and app changes need to be checked and
loaded.

>>> self.call_service("app/reload", namespace="admin")

app/enable

Enables a disabled app, so it can be loaded by AD.

>>> self.call_service("app/enable", app="living_room_app", namespace="admin")

app/disable

Disables an enabled app, so it cannot be loaded by AD. This service call is persistent, so even if AD restarts, the app
will not be restarted

>>> self.call_service("app/enable", app="living_room_app", namespace="admin")

production_mode/set

Sets the production mode AD is running on. The value of the mode arg has to be True or False.

>>> self.call_service("production_mode/set", mode=True, namespace="appdaemon")

All namespaces except appdaemon, global, and admin:

state/add_entity

Adds an existing entity to the required namespace.

>>> self.call_service("state/set", entity_id="sensor.test", state="on", attributes={
→˓"friendly_name" : "Sensor Test"}, namespace="default")

state/set

Sets the state of an entity. This service allows any key-worded args to define what entity’s values need to be set.

>>> self.call_service("state/set", entity_id="sensor.test", state="on", attributes={
→˓"friendly_name" : "Sensor Test"}, namespace="default")

state/remove_entity

Removes an existing entity from the required namespace.

>>> self.call_service("state/remove_entity", entity_id="sensor.test"}, namespace=
→˓"default")

All namespaces except appdaemon:

event/fire

Fires an event within the specified namespace. The event arg is required.

>>> self.call_service("event/fire", event="test_event", entity_id="appdaemon.test",
→˓namespace="hass")

rules namespace only:

sequence/run

Runs a predefined sequence. The entity_id arg with the sequence full-qualified entity name is required.

114 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

>>> self.call_service("sequence/run", entity_id ="sequence.christmas_lights",
→˓namespace="rules")

8.2.11 Threading

set_app_pin(self, pin)
Sets an App to be pinned or unpinned.

Parameters pin (bool) – Sets whether the App becomes pinned or not.

Returns None.

Examples

The following line should be put inside the initialize() function.

>>> self.set_app_pin(True)

get_app_pin(self)
Finds out if the current App is currently pinned or not.

Returns True if the App is pinned, False otherwise.

Return type bool

Examples

>>> if self.get_app_pin(True):
>>> self.log("App pinned!")

set_pin_thread(self, thread)
Sets the thread that the App will be pinned to.

Parameters thread (int) – Number of the thread to pin to. Threads start at 0 and go up to the
number of threads specified in appdaemon.yaml -1.

Returns None.

Examples

The following line should be put inside the initialize() function.

>>> self.set_pin_thread(5)

get_pin_thread(self)
Finds out which thread the App is pinned to.

Returns The thread number or -1 if the App is not pinned.

Return type int

8.2. Reference 115

AppDaemon Documentation, Release 4.0.7

Examples

>>> thread = self.get_pin_thread():
>>> self.log(f"I'm pinned to thread: {thread}")

8.2.12 Async

create_task(self, coro, callback=None, **kwargs)
Schedules a Coroutine to be executed.

Parameters

• coro – The coroutine object (not coroutine function) to be executed.

• callback – The non-async callback to be executed when complete.

• **kwargs (optional) – Any additional keyword arguments to send the callback.

Returns A Future, which can be cancelled by calling f.cancel().

Examples

>>> f = self.create_task(asyncio.sleep(3), callback=self.coro_callback)
>>>
>>> def coro_callback(self, kwargs):

run_in_executor(self, func, *args, **kwargs)

Runs a Sync function from within an Async function using Executor threads. The function is actually
awaited during execution

Parameters

• func – The function to be executed.

• *args (optional) – Any additional arguments to be used by the function

• **kwargs (optional) – Any additional keyword arguments to be used by the function

Returns None

Examples

>>> await self.run_in_executor(self.run_request)

sleep(delay, result=None)
Pause execution for a certain time span (not available in sync apps)

Parameters

• delay (float) – Number of seconds to pause.

• result (optional) – Result to return upon delay completion.

Returns Result or None.

116 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

Notes

This function is not available in sync apps.

Examples

>>> async def myfunction(self):
>>> await self.sleep(5)

8.2.13 Utility

get_app(self, name)
Gets the instantiated object of another app running within the system.

This is useful for calling functions or accessing variables that reside in different apps without requiring duplica-
tion of code.

Parameters name (str) – Name of the app required. This is the name specified in header section
of the config file, not the module or class.

Returns An object reference to the class.

Examples

>>> MyApp = self.get_app("MotionLights")
>>> MyApp.turn_light_on()

get_ad_version()
Returns a string with the current version of AppDaemon.

Examples

>>> version = self.get_ad_version()

entity_exists(self, entity_id, **kwargs)
Checks the existence of an entity in Home Assistant.

When working with multiple Home Assistant instances, it is possible to specify the namespace, so that it checks
within the right instance in in the event the app is working in a different instance. Also when using this function,
it is also possible to check if an AppDaemon entity exists.

Parameters

• entity_id (str) – The fully qualified entity id (including the device type).

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns True if the entity id exists, False otherwise.

Return type bool

8.2. Reference 117

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

Examples

Check if the entity light.living_room exist within the app’s namespace

>>> if self.entity_exists("light.living_room"):
>>> #do something

Check if the entity mqtt.security_settings exist within the mqtt namespace if the app is operating in a different
namespace like default

>>> if self.entity_exists("mqtt.security_settings", namespace = "mqtt"):
>>> #do something

split_entity(self, entity_id, **kwargs)
Splits an entity into parts.

This utility function will take a fully qualified entity id of the form light.hall_light and split it into 2
values, the device and the entity, e.g. light and hall_light.

Parameters

• entity_id (str) – The fully qualified entity id (including the device type).

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns A list with 2 entries, the device and entity respectively.

Examples

Do some action if the device of the entity is scene.

>>> device, entity = self.split_entity(entity_id)
>>> if device == "scene":
>>> #do something specific to scenes

remove_entity(self, entity_id, **kwargs)
Deletes an entity created within a namespaces.

If an entity was created, and its deemed no longer needed, by using this function, the entity can be
removed from AppDaemon permanently.

Parameters

• entity_id (str) – The fully qualified entity id (including the device type).

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns None.

Examples

Delete the entity in the present namespace.

118 Chapter 8. AppDaemon API Reference

APPGUIDE.html#namespaces
APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

>>> self.remove_entity('sensor.living_room')

Delete the entity in the mqtt namespace.

>>> self.remove_entity('mqtt.living_room_temperature', namespace = 'mqtt')

split_device_list(devices)
Converts a comma-separated list of device types to an iterable list.

This is intended to assist in use cases where the App takes a list of entities from an argument, e.g., a list of
sensors to monitor. If only one entry is provided, an iterable list will still be returned to avoid the need for
special processing.

Parameters devices (str) – A comma-separated list of devices to be split (without spaces).

Returns A list of split devices with 1 or more entries.

Examples

>>> for sensor in self.split_device_list(self.args["sensors"]):
>>> #do something for each sensor, e.g., make a state subscription

get_plugin_config(self, **kwargs)
Gets any useful metadata that the plugin may have available.

For instance, for the HASS plugin, this will return Home Assistant configuration data such as latitude and
longitude.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str) – Select the namespace of the plugin for which data is
desired.

Returns A dictionary containing all the configuration information available from the Home Assis-
tant /api/config endpoint.

Examples

>>> config = self.get_plugin_config()
>>> self.log(f'My current position is {config["latitude"]}(Lat), {config[
→˓"longitude"]}(Long)')
My current position is 50.8333(Lat), 4.3333(Long)

friendly_name(self, entity_id, **kwargs)
Gets the Friendly Name of an entity.

Parameters

• entity_id (str) – The fully qualified entity id (including the device type).

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns The friendly name of the entity if it exists or the entity id if not.

Return type str

8.2. Reference 119

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

Examples

>>> tracker = "device_tracker.andrew"
>>> friendly_name = self.friendly_name(tracker)
>>> tracker_state = self.get_tracker_state(tracker)
>>> self.log(f"{tracker} ({friendly_name}) is {tracker_state}.")
device_tracker.andrew (Andrew Tracker) is on.

set_production_mode(self, mode=True)
Deactivates or activates the production mode in AppDaemon.

When called without declaring passing any arguments, mode defaults to True.

Parameters mode (bool) – If it is True the production mode is activated, or deactivated other-
wise.

Returns The specified mode or None if a wrong parameter is passed.

start_app(self, app, **kwargs)
Starts an App which can either be running or not.

This Api call cannot start an app which has already been disabled in the App Config. It essentially only runs the
initialize() function in the app, and changes to attributes like class name or app config is not taken into account.

Parameters

• app (str) – Name of the app.

• **kwargs (optional) – Zero or more keyword arguments.

Returns None.

Examples

>>> self.start_app("lights_app")

stop_app(self, app, **kwargs)
Stops an App which is running.

Parameters

• app (str) – Name of the app.

• **kwargs (optional) – Zero or more keyword arguments.

Returns None.

Examples

>>> self.stop_app("lights_app")

restart_app(self, app, **kwargs)
Restarts an App which can either be running or not.

Parameters

• app (str) – Name of the app.

• **kwargs (optional) – Zero or more keyword arguments.

Returns None.

120 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

Examples

>>> self.restart_app("lights_app")

reload_apps(self, **kwargs)
Reloads the apps, and loads up those that have changes made to their .yaml or .py files.

This utility function can be used if AppDaemon is running in production mode, and it is needed to reload apps
that changes have been made to.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Returns None.

Examples

>>> self.reload_apps()

8.2.14 Dialogflow

get_dialogflow_intent(self, data)
Gets the intent’s action from the Google Home response.

Parameters data – Response received from Google Home.

Returns A string representing the Intent from the interaction model that was requested, or None, if
no action was received.

Examples

>>> intent = ADAPI.get_dialogflow_intent(data)

get_dialogflow_slot_value(data, slot=None)
Gets slots’ values from the interaction model.

Parameters

• data – Response received from Google Home.

• slot (str) – Name of the slot. If a name is not specified, all slots will be returned as a
dictionary. If a name is specified but is not found, None will be returned.

Returns A string representing the value of the slot from the interaction model, or a hash of slots.

Examples

>>> beer_type = ADAPI.get_dialogflow_intent(data, "beer_type")
>>> all_slots = ADAPI.get_dialogflow_intent(data)

format_dialogflow_response(self, speech=None)
Formats a response to be returned to Google Home, including speech.

Parameters speech (str) – The text for Google Home to say.

Returns None.

8.2. Reference 121

AppDaemon Documentation, Release 4.0.7

Examples

>>> ADAPI.format_dialogflow_response(speech = "Hello World")

8.2.15 Alexa

get_alexa_intent(data)
Gets the Intent’s name from the Alexa response.

Parameters data – Response received from Alexa.

Returns A string representing the Intent’s name from the interaction model that was requested, or
None, if no Intent was received.

Examples

>>> intent = ADAPI.get_alexa_intent(data)

get_alexa_slot_value(data, slot=None)
Gets values for slots from the interaction model.

Parameters

• data – The request data received from Alexa.

• slot – Name of the slot. If a name is not specified, all slots will be returned as a dictionary.
If a name is specified but is not found, None will be returned.

Returns A string representing the value of the slot from the interaction model, or a hash of
slots.

Examples

>>> beer_type = ADAPI.get_alexa_intent(data, "beer_type")
>>> all_slots = ADAPI.get_alexa_intent(data)

format_alexa_response(speech=None, card=None, title=None)
Formats a response to be returned to Alex including speech and a card.

Parameters

• speech (str) – The text for Alexa to say.

• card (str) – Text for the card.

• title (str) – Title for the card.

Returns None.

Examples

>>> ADAPI.format_alexa_response(speech = "Hello World", card = "Greetings to the
→˓world", title = "Hello")

122 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

get_alexa_error(data)
Gets the error message from the Alexa API response.

Parameters data – Response received from the Alexa API .

Returns A string representing the value of message, or None if no error message was received.

8.2.16 API

register_endpoint(self, callback, name=None)
Registers an endpoint for API calls into the current App.

Parameters

• callback – The function to be called when a request is made to the named endpoint.

• name (str, optional) – The name of the endpoint to be used for the call (Default:
None).

Returns A handle that can be used to remove the registration.

Examples

It should be noted that the register function, should return a string (can be empty), and an HTTP OK status
response (e.g., 200. If this is not added as a returned response, the function will generate an error each time it is
processed.

>>> self.register_endpoint(my_callback)
>>> self.register_callback(alexa_cb, "alexa")

unregister_endpoint(self, handle)
Removes a previously registered endpoint.

Parameters handle – A handle returned by a previous call to register_endpoint

Returns None.

Examples

>>> self.unregister_endpoint(handle)

WebRoute ~~~

register_route(self, callback, route=None, **kwargs)

Registers a route for Web requests into the current App. By registering an app web route, this allows to
make use of AD’s internal web server to serve web clients. All routes registered using this api call, can be
accessed using http://AD_IP:Port/app/route.

Parameters

• callback – The function to be called when a request is made to the named route. This
must be an async function

• route (str, optional) – The name of the route to be used for the request (Default:
the app’s name).

Keyword Arguments

8.2. Reference 123

AppDaemon Documentation, Release 4.0.7

• token (str, optional) – A previously registered token can be passed with the api
call, which

• be used to secure the app route. This allows for different
security credentials to be used across different (can) –

• routes. It should be noted that if a device has already
registered using AD's Admin UI's password (app) –

• a cookie has been stored by the browser, that device will
bypass the token and still access the web server. (and) –

Returns A handle that can be used to remove the registration.

Examples

It should be noted that the register function, should return a string (can be empty), and an HTTP OK status
response (e.g., 200. If this is not added as a returned response, the function will generate an error each time it is
processed.

>>> self.register_route(my_callback)
>>> self.register_route(stream_cb, "camera")

unregister_route(self, handle)
Removes a previously registered app route.

Parameters handle – A handle returned by a previous call to register_app_route

Returns None.

Examples

>>> self.unregister_route(handle)

8.2.17 Other

run_in_thread(self, callback, thread, **kwargs)
Schedules a callback to be run in a different thread from the current one.

Parameters

• callback – Function to be run on the new thread.

• thread (int) – Thread number (0 - number of threads).

• **kwargs – Arbitrary keyword parameters to be provided to the callback function when
it is invoked.

Returns None.

Examples

>>> self.run_in_thread(my_callback, 8)

submit_to_executor(self, func, *args, **kwargs)

124 Chapter 8. AppDaemon API Reference

AppDaemon Documentation, Release 4.0.7

Submits a Sync function from within another Sync function to be executed using Executor threads. The
function is not waited to be executed. As it submits and continues the rest of the code. This can be useful
if wanting to execute a long running code, and don’t want it to hold up the thread for other callbacks.

Parameters

• func – The function to be executed.

• *args (optional) – Any additional arguments to be used by the function

• **kwargs (optional) – Any additional keyword arguments to be used by the function.

• of the keyword arguments will be the callback, which will be
ran when the function has completed execution (Part) –

Returns A Future, which can be cancelled by calling f.cancel().

Examples

>>> f = self.submit_to_executor(self.run_request, callback=self.callback)
>>>
>>> def callback(self, kwargs):

get_thread_info(self)
Gets information on AppDaemon worker threads.

Returns A dictionary containing all the information for AppDaemon worker threads.

Examples

>>> thread_info = self.get_thread_info()

get_scheduler_entries(self)
Gets information on AppDaemon scheduler entries.

Returns A dictionary containing all the information for entries in the AppDaemon scheduler.

Examples

>>> schedule = self.get_scheduler_entries()

get_callback_entries(self)
Gets information on AppDaemon callback entries.

Returns A dictionary containing all the information for entries in the AppDaemon state, and event
callback table.

Examples

>>> callbacks = self.get_callback_entries()

depends_on_module(self, *modules)
Registers a global_modules dependency for an app.

Parameters *modules – Modules to register a dependency on.

8.2. Reference 125

AppDaemon Documentation, Release 4.0.7

Returns None.

Examples

>>> import somemodule
>>> import anothermodule
>>> # later
>>> self.depends_on_module([somemodule)

126 Chapter 8. AppDaemon API Reference

CHAPTER 9

HASS API Reference

This page provides a list of API calls and specific information related to the HASS plugin.

9.1 App Creation

To create apps based on just the AppDaemon base API, use some code like the following:

import hassapi as hass

class MyApp(hass.Hass):

def initialize(self):

9.2 Reference

9.3 Services

turn_on(self, entity_id, **kwargs)
Turns on a Home Assistant entity.

This is a convenience function for the homeassistant.turn_on function. It can turn on pretty much
anything in Home Assistant that can be turned on or run (e.g., Lights, Switches, Scenes, Scripts, etc.).

Parameters

• entity_id (str) – Fully qualified id of the thing to be turned on (e.g., light.office_lamp,
scene.downstairs_on).

• **kwargs – Zero or more keyword arguments.

Returns None.

127

AppDaemon Documentation, Release 4.0.7

Examples

Turn on a switch.

>>> self.turn_on("switch.backyard_lights")

Turn on a scene.

>>> self.turn_on("scene.bedroom_on")

Turn on a light and set its color to green.

>>> self.turn_on("light.office_1", color_name = "green")

turn_off(self, entity_id, **kwargs)
Turns off a Home Assistant entity.

This is a convenience function for the homeassistant.turn_off function. It can turn off pretty much
anything in Home Assistant that can be turned off (e.g., Lights, Switches, etc.).

Parameters

• entity_id (str) – Fully qualified id of the thing to be turned off (e.g.,
light.office_lamp, scene.downstairs_on).

• **kwargs – Zero or more keyword arguments.

Returns None.

Examples

Turn off a switch.

>>> self.turn_off("switch.backyard_lights")

Turn off a scene.

>>> self.turn_off("scene.bedroom_on")

toggle(self, entity_id, **kwargs)
Toggles between on and off for the selected entity.

This is a convenience function for the homeassistant.toggle function. It is able to flip the state of pretty
much anything in Home Assistant that can be turned on or off.

Parameters

• entity_id (str) – Fully qualified id of the thing to be turned off (e.g.,
light.office_lamp, scene.downstairs_on).

• **kwargs – Zero or more keyword arguments.

Returns None.

Examples

>>> self.toggle("switch.backyard_lights")
>>> self.toggle("light.office_1", color_name = "green")

128 Chapter 9. HASS API Reference

AppDaemon Documentation, Release 4.0.7

set_value(self, entity_id, value, **kwargs)
Sets the value of an input_number.

This is a convenience function for the input_number.set_value function. It can set the value of an
input_number in Home Assistant.

Parameters

• entity_id (str) – Fully qualified id of input_number to be changed (e.g., in-
put_number.alarm_hour).

• value (int or float) – The new value to set the input_number to.

• **kwargs – Zero or more keyword arguments.

Returns None.

Examples

>>> self.set_value("input_number.alarm_hour", 6)

set_textvalue(self, entity_id, value, **kwargs)
Sets the value of an input_text.

This is a convenience function for the input_text.set_value function. It can set the value of an in-
put_text in Home Assistant.

Parameters

• entity_id (str) – Fully qualified id of input_text to be changed (e.g., input_text.text1).

• value (str) – The new value to set the input_text to.

• **kwargs – Zero or more keyword arguments.

Returns None.

Examples

>>> self.set_textvalue("input_text.text1", "hello world")

select_option(self, entity_id, option, **kwargs)
Sets the value of an input_option.

This is a convenience function for the input_select.select_option function. It can set the value of an
input_select in Home Assistant.

Parameters

• entity_id (str) – Fully qualified id of input_select to be changed (e.g., in-
put_select.mode).

• option (str) – The new value to set the input_select to.

• **kwargs – Zero or more keyword arguments.

Returns None.

9.3. Services 129

AppDaemon Documentation, Release 4.0.7

Examples

>>> self.select_option("input_select.mode", "Day")

notify(self, message, **kwargs)
Sends a notification.

This is a convenience function for the notify.notify service. It will send a notification to a named notifi-
cation service. If the name is not specified, it will default to notify/notify.

Parameters

• message (str) – Message to be sent to the notification service.

• **kwargs – Zero or more keyword arguments.

Returns None.

Examples

>>> self.notify("Switching mode to Evening")
>>> self.notify("Switching mode to Evening", title = "Some Subject", name = "smtp
→˓")

will send a message through notify.smtp instead of the default notify.notify

render_template(self, template, **kwargs)
Renders a Home Assistant Template

Parameters template (str) – The Home Assistant Template to be rendered.

Keyword Arguments None. –

Returns The rendered template in a native Python type.

Examples

>>> self.render_template("{{ states('sun.sun') }}")
Returns (str) above_horizon

>>> self.render_template("{{ is_state('sun.sun', 'above_horizon') }}")
Returns (bool) True

>>> self.render_template("{{ states('sensor.outside_temp') }}")
Returns (float) 97.2

9.4 Presence

get_trackers(self, **kwargs)
Returns a list of all device tracker names.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

130 Chapter 9. HASS API Reference

AppDaemon Documentation, Release 4.0.7

• person (boolean, optional) – If set to True, use person rather than device_tracker
as the device type to query

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Examples

>>> trackers = self.get_trackers()
>>> for tracker in trackers:
>>> do something
>>> people = self.get_trackers(person=True)
>>> for person in people:
>>> do something

get_tracker_details(self, **kwargs)
Returns a list of all device trackers and their associated state.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• person (boolean, optional) – If set to True, use person rather than device_tracker
as the device type to query

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Examples

>>> trackers = self.get_tracker_details()
>>> for tracker in trackers:
>>> do something

get_tracker_state(self, entity_id, **kwargs)
Gets the state of a tracker.

Parameters entity_id – Fully qualified entity id of the device tracker or person to query, e.g.,
device_tracker.andrew or person.andrew.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns

The values returned depend in part on the configuration and type of device trackers in the system.
Simpler tracker types like Locative or NMAP will return one of 2 states:

• home

• not_home

Some types of device tracker are in addition able to supply locations that have been configured
as Geofences, in which case the name of that location can be returned.

9.4. Presence 131

APPGUIDE.html#namespaces
APPGUIDE.html#namespaces
APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

Examples

>>> state = self.get_tracker_state("device_tracker.andrew")
>>> self.log("state is {}".format(state))
>>> state = self.get_tracker_state("person.andrew")
>>> self.log("state is {}".format(state))

anyone_home(self, **kwargs)
Determines if the house/apartment is occupied.

A convenience function to determine if one or more person is home. Use this in preference to getting the state of
group.all_devices() as it avoids a race condition when using state change callbacks for device trackers.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• person (boolean, optional) – If set to True, use person rather than device_tracker
as the device type to query

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns Returns True if anyone is at home, False otherwise.

Examples

>>> if self.anyone_home():
>>> do something
>>> if self.anyone_home(person=True):
>>> do something

everyone_home(self, **kwargs)
Determine if all family’s members at home.

A convenience function to determine if everyone is home. Use this in preference to getting the state of group.
all_devices() as it avoids a race condition when using state change callbacks for device trackers.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• person (boolean, optional) – If set to True, use person rather than device_tracker
as the device type to query

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns Returns True if everyone is at home, False otherwise.

Examples

>>> if self.everyone_home():
>>> do something
>>> if self.everyone_home(person=True):
>>> do something

132 Chapter 9. HASS API Reference

APPGUIDE.html#namespaces
APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

noone_home(self, **kwargs)
Determines if the house/apartment is empty.

A convenience function to determine if no people are at home. Use this in preference to getting the state of
group.all_devices() as it avoids a race condition when using state change callbacks for device trackers.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• person (boolean, optional) – If set to True, use person rather than device_tracker
as the device type to query

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns Returns True if no one is home, False otherwise.

Examples

>>> if self.noone_home():
>>> do something
>>> if self.noone_home(person=True):
>>> do something

9.5 Database

get_history(self, **kwargs)
Gets access to the HA Database. This is a convenience function that allows accessing the HA Database, so the
history state of a device can be retrieved. It allows for a level of flexibility when retrieving the data, and returns
it as a dictionary list. Caution must be taken when using this, as depending on the size of the database, it can
take a long time to process.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• entity_id (str, optional) – Fully qualified id of the device to be querying, e.g.,
light.office_lamp or scene.downstairs_on This can be any entity_id in the
database. If this is left empty, the state of all entities will be retrieved within the spec-
ified time. If both end_time and start_time explained below are declared, and
entity_id is specified, the specified entity_id will be ignored and the history states
of all entity_id in the database will be retrieved within the specified time.

• days (int, optional) – The days from the present-day walking backwards that is
required from the database.

• start_time (optional) – The start time from when the data should be retrieved. This
should be the furthest time backwards, like if we wanted to get data from now until two
days ago. Your start time will be the last two days datetime. start_time time can be
either a UTC aware time string like 2019-04-16 12:00:03+01:00 or a datetime.
datetime object.

• end_time (optional) – The end time from when the data should be retrieved. This
should be the latest time like if we wanted to get data from now until two days ago. Your
end time will be today’s datetime end_time time can be either a UTC aware time string
like 2019-04-16 12:00:03+01:00 or a datetime.datetime object. It should

9.5. Database 133

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

be noted that it is not possible to declare only end_time. If only end_time is declared
without start_time or days, it will revert to default to the latest history state. When
end_time is specified, it is not possible to declare entity_id. If entity_id is spec-
ified, end_time will be ignored.

• callback (callable, optional) – If wanting to access the database to get a large
amount of data, using a direct call to this function will take a long time to run and lead to
AD cancelling the task. To get around this, it is better to pass a function, which will be
responsible of receiving the result from the database. The signature of this function follows
that of a scheduler call.

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns An iterable list of entity_ids and their history state.

Examples

Get device state over the last 5 days.

>>> data = self.get_history("light.office_lamp", days = 5)

Get device state over the last 2 days and walk forward.

>>> import datetime
>>> from datetime import timedelta
>>> start_time = datetime.datetime.now() - timedelta(days = 2)
>>> data = self.get_history("light.office_lamp", start_time = start_time)

Get device state from yesterday and walk 5 days back.

>>> import datetime
>>> from datetime import timedelta
>>> end_time = datetime.datetime.now() - timedelta(days = 1)
>>> data = self.get_history(end_time = end_time, days = 5)

9.6 See More

Read the AppDaemon API Reference to learn other inherited helper functions that can be used by Hass applications.

134 Chapter 9. HASS API Reference

APPGUIDE.html#namespaces
AD_API_REFERENCE.html

CHAPTER 10

MQTT API Reference

A list of API calls and information specific to the MQTT plugin.

10.1 App Creation

To create apps based on just the MQTT API, use some code like the following:

import mqttapi as mqtt

class MyApp(mqtt.Mqtt):

def initialize(self):

10.2 Making Calls to MQTT

The MQTT Plugin uses the inherited call_service() helper function the AppDaemon API, to carry out service
calls from within an AppDaemon app. See the documentation of this function here for a detailed description.

The function call_service() allows the app to carry out one of the following services:

• Publish

• Subscribe

• Unsubscribe

By simply specifying within the function what is to be done. It uses configuration specified in the plugin configuration
which simplifies the call within the app significantly. Different brokers can be accessed within an App, as long as they
are all declared when the plugins are configured, and using the namespace parameter. See the section on namespaces
for a detailed description.

135

AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.call_service
APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

10.2.1 Examples

if wanting to publish data to a broker
self.call_service("publish", topic = "homeassistant/bedroom/light", payload = "ON")
if wanting to unsubscribe a topic from a broker in a different namespace
self.call_service("unsubscribe", topic = "homeassistant/bedroom/light", namespace =
→˓"mqtt2")

The MQTT API also provides 3 convenience functions to make calling of specific functions easier and more readable.
These are documented in the following section.

10.3 Reference

10.4 Services

mqtt_subscribe(self, topic, **kwargs)
Subscribes to a MQTT topic.

This helper function used for subscribing to a topic on a broker, from within an AppDaemon App.

This allows the apps to now access events from that topic, in realtime. So outside the initial configuration at
plugin config, this allows access to other topics while the apps runs. It should be noted that if AppDaemon was
to reload, the topics subscribed via this function will not be available by default. On those declared at the plugin
config will always be available. It uses configuration specified in the plugin configuration which simplifies the
call within the app significantly.

Different brokers can be accessed within an app, as long as they are all declared when the plugins are configured,
and using the namespace parameter.

Parameters

• topic (str) – The topic to be subscribed to on the broker (e.g., homeassistant/
bedroom/light).

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns None.

Examples

>>> self.mqtt_subscribe("homeassistant/bedroom/light")

mqtt_unsubscribe(self, topic, **kwargs)
Unsubscribes from a MQTT topic.

A helper function used to unsubscribe from a topic on a broker, from within an AppDaemon app.

This denies the Apps access events from that topic, in realtime. It is possible to unsubscribe from topics, even
if they were part of the topics in the plugin config; but it is not possible to unsubscribe #. It should also be
noted that if AppDaemon was to reload, the topics unsubscribed via this function will be available if they were
configured with the plugin by default. It uses configuration specified in the plugin configuration which simplifies
the call within the app significantly.

136 Chapter 10. MQTT API Reference

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

Different brokers can be accessed within an app, as long as they are all declared when the plugins are configured,
and using the namespace parameter.

Parameters

• topic (str) – The topic to be unsubscribed from on the broker (e.g., homeassistant/
bedroom/light).

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns None.

Examples

>>> self.mqtt_unsubscribe("homeassistant/bedroom/light")

mqtt_publish(self, topic, payload=None, **kwargs)
Publishes a message to a MQTT broker.

This helper function used for publishing a MQTT message to a broker, from within an AppDaemon app. It uses
configuration specified in the plugin configuration which simplifies the call within the App significantly.

Different brokers can be accessed within an app, as long as they are all declared when the plugins are configured,
and using the namespace parameter.

Parameters

• topic (str) – topic the payload is to be sent to on the broker (e.g., homeassistant/
bedroom/light).

• payload – data that is to be sent to on the broker (e.g., 'ON').

• **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments

• qos (int, optional) – The Quality of Service (QOS) that is to be used when sending
the data to the broker. This is has to be an integer (Default value: 0).

• retain (bool, optional) – This flag is used to specify if the broker is to retain the
payload or not (Default value: False).

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns None.

Examples:

Send data to the default HA broker.

>>> self.mqtt_publish("homeassistant/bedroom/light", "ON")

Send data to a different broker.

>>> self.mqtt_publish("homeassistant/living_room/light", "ON", qos = 0, retain =
→˓True, namespace = "mqtt2")

10.4. Services 137

APPGUIDE.html#namespaces
APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

is_client_connected(self, **kwargs)
Returns TRUE if the MQTT plugin is connected to its broker, FALSE otherwise.

This a helper function used to check or confirm within an app if the plugin is connected to its broker. This can
be useful, if it is necessary to be certain the client is connected, so if not the app can internally store the data in
a queue, and wait for connection before sending the data.

Different brokers can be accessed within an app, as long as they are all declared when the plugins are configured,
and using the namespace parameter.

Parameters **kwargs (optional) – Zero or more keyword arguments.

Keyword Arguments namespace (str, optional) – Namespace to use for the call. See the
section on namespaces for a detailed description. In most cases it is safe to ignore this parameter.

Returns None.

Examples

Check if client is connected, and send data. >>> if self.clientConnected(): >>> self.mqtt_publish(topic, payload)

Check if client is connected in mqtt2 namespace, and send data.

>>> if self.clientConnected(namespace = 'mqtt2'):
>>> self.mqtt_publish(topic, payload, namespace = 'mqtt2')

10.5 Events

listen_event(self, callback, event=None, **kwargs)
Listens for changes within the MQTT plugin.

Unlike other plugins, MQTT does not keep state. All MQTT messages will have an event which is set to
MQTT_MESSAGE by default. This can be changed to whatever that is required in the plugin configuration.

Parameters

• callback – Function to be invoked when the requested event occurs. It must conform to
the standard Event Callback format documented Here.

• event – Name of the event to subscribe to. Can be the declared event_name parameter
as specified in the plugin configuration. If no event is specified, listen_event() will
subscribe to all MQTT events within the app’s functional namespace.

• **kwargs (optional) – One or more keyword value pairs representing App specific
parameters to supply to the callback. If the keywords match values within the event data,
they will act as filters, meaning that if they don’t match the values, the callback will not fire.

As an example of this, a specific topic or wildcard can be listened to, instead of listening to
all topics subscribed to. For example, if data is sent to a subscribed topic, it will generate an
event as specified in the config; if we want to listen to a specific topic or wildcard, topic or
wildcard can be passed in, and used to filter the callback by supplying them as keyword
arguments. If you include keyword values, the values supplied to the ‘‘listen_event()‘‘call
must match the values in the event or it will not fire. If the keywords do not match any of
the data in the event they are simply ignored.

Filtering will work with any event type, but it will be necessary to figure out the data associ-
ated with the event to understand what values can be filtered on. If using wildcard, only

138 Chapter 10. MQTT API Reference

APPGUIDE.html#namespaces
APPGUIDE.html#about-event-callbacks

AppDaemon Documentation, Release 4.0.7

those used to subscribe to the broker can be used as wildcards. The plugin supports the use
both single and multi-level wildcards.

Keyword Arguments

• namespace (str, optional) – Namespace to use for the call. See the section on
namespaces for a detailed description. In most cases it is safe to ignore this parameter.

• binary (bool, optional) – If wanting the payload to be returned as binary, this
should be specified. If not given, AD will return the payload as decoded data. It should
be noted that it is not possible to have different apps receieve both binary and non-binary
data on the same topic

Returns A handle that can be used to cancel the callback.

Examples

Listen all events.

>>> self.listen_event(self.mqtt_message_received_event, "MQTT_MESSAGE")

Listen events for a specific subscribed topic.

>>> self.listen_event(self.mqtt_message_received_event, "MQTT_MESSAGE", topic=
→˓'homeassistant/bedroom/light')

Listen events for a specific subscribed high level topic.

>>> self.listen_event(self.mqtt_message_received_event, "MQTT_MESSAGE", wildcard=
→˓'homeassistant/#')

>>> self.listen_event(self.mqtt_message_received_event, "MQTT_MESSAGE", wildcard=
→˓'homeassistant/+/motion')

Listen events for binary payload

>>> self.listen_event(self.mqtt_message_received_event, "MQTT_MESSAGE", topic=
→˓'hermes/audioServer/#', binary=True)

Listen plugin’s disconnected events from the broker.

>>> self.listen_event(self.mqtt_message_received_event, "MQTT_MESSAGE", state=
→˓'Disconnected', topic=None)

Listen plugin’s’ connected events from the broker.

>>> self.listen_event(self.mqtt_message_received_event, "MQTT_MESSAGE", state=
→˓'Connected', topic=None)

Notes

At this point, it is not possible to use single level wildcard like using homeassistant/+/light instead of
homeassistant/bedroom/light. This could be added later, if need be.

10.5. Events 139

APPGUIDE.html#namespaces

AppDaemon Documentation, Release 4.0.7

10.6 MQTT Config

Developers can get the MQTT configuration data (i.e., client_id or username) using the helper function
get_plugin_config() inherited from the AppDaemon API. See the documentation of this function here for
a detailed description.

10.7 See More

Read the AppDaemon API Reference to learn other inherited helper functions that can be used by Hass applications.

140 Chapter 10. MQTT API Reference

AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_plugin_config
AD_API_REFERENCE.html

CHAPTER 11

Dashboard Install and Configuration

HADashboard is a dashboard for Home Assistant that is intended to be wall mounted, and is optimized for distance
viewing.

141

https://home-assistant.io/

AppDaemon Documentation, Release 4.0.7

11.1 Installation and Configuration

HADashboard is dependent upon AppDaemon. As a first step please refer to the AppDaemon Installation Documen-
tation.

When you have AppDaemon installed and running, configuration of the Dashboard is pretty simple. You just need to
add a hadashboard directive to the appdaemon.yaml file. For instance:

appdaemon:
...

hadashboard:

By default, dashboards are searched for under the config directory in a sub directory called dashboards. Optionally,
you can place your dashboards in a directory other than under the config directory using the dashboard_dir
directive. For example:

hadashboard:
dashboard_dir: /etc/appdaemon/dashboards

Once initial configuration is complete, you will need to create the dashboards directive either under the conf
directory, or wherever you specify with dash_dir. Once that is done, for testing purposes, create a file in the
dashboards directory called Hello.dash and paste in the following:

##
Main arguments, all optional
##
title: Hello Panel
widget_dimensions: [120, 120]
widget_margins: [5, 5]
columns: 8

label:
widget_type: label
text: Hello World

layout:
- label(2x2)

When you have added the lines to the config and created the dashboards directory and test dashboard, restart AppDae-
mon and you will be ready to go. If you navigate to the top level, e.g., http://192.168.1.20:5050 in the case
above, you will see a welcome page with a list of configured dashboards. If you haven’t yet configured any the list
will be empty.

When you have created a dashboard you can navigate to it by going to http://192.168.1.20:5050/
<Dashboard Name>

If you are using AppDaemon just for the dashboard and not the Apps, you can disable the app engine with the following
directive:

appdaemon:
disable_apps: 1

This will free up some CPU and memory.

HADashboard pre-compiles all of the user created Dashboard for efficiency. It will detect when changes have been
made to widgets, styles or dashboards and automatically recompile. This is usually desirable as compilation can take
several seconds on slower hardware for a fully loaded dashboard, however to force a recompilation every time, use the
following directive:

142 Chapter 11. Dashboard Install and Configuration

INSTALL.html
INSTALL.html

AppDaemon Documentation, Release 4.0.7

hadashboard:
force_compile: 1

This will force dashboard recompilation whenever the dashboard is loaded. You can also force a recompilation by
adding the parameter recompile=1 to the dashboard URL.

By default, information and errors around access to the Dashboard will go to the same place as AppDaemon’s log. To
split the page access out to a different file, use the access_log directives in the logs section. For example:

logs:
access_log:
filename: /export/pegasus/hass/appdaemon_test/logs/access.log

To force dashboard recompilation of all dashboards after a restart, use:

hadashboard:
compile_on_start: 1

This should not be necessary but may on occasion be required after an upgrade to pickup changes. This is now the
default if not otherwise specified.

11.2 Dashboard URL Parameters

The dashboard URL supports a couple of extra parameters:

• skin - name of the skin you want to use, default is default

• recompile - set to anything to force a recompilation of the dashboard

• deviceid- set a deviceid. See how to use it in External Commands.

For example, the following url will load a dashboard called main with the obsidian skin:

http://<ip address>:<port>/Main?skin=obsidian

11.2. Dashboard URL Parameters 143

DASHBOARD_CREATION.html#external-commands

AppDaemon Documentation, Release 4.0.7

144 Chapter 11. Dashboard Install and Configuration

CHAPTER 12

Dashboard Creation

Fig. 1: UI

145

AppDaemon Documentation, Release 4.0.7

12.1 Dashboard Creation

Dashboard configuration is simple yet very powerful. Dashboards can be created in single files or made modular for
reuse of blocks of widgets. Dashboards are configured using YAML.

We will start with a simple single-file configuration. Create a file with a .dash extension in the dashboards
directory, and pull it up in your favorite editor.

12.1.1 Main Settings

A top-level dashboard will usually have one of several initial directives to configure aspects of the dashboard, although
they are all optional. An example is as follows:

##
Main arguments, all optional
##
title: Main Panel
widget_dimensions: [120, 120]
widget_size: [1, 1]
widget_margins: [5, 5]
columns: 8
global_parameters:

use_comma: 0
precision: 1
use_hass_icon: 1
namespace: default
devices:

media_player:
step: 5

These are all fairly self-explanatory:

• title - the name that will end up in the title of the web page, defaults to “HADashboard”.

• widget_dimensions - the unit height and width of the individual widgets in pixels. Note that the absolute
size is not too important as on tablets at least the browser will scale the page to fit. What is more important is the
aspect ratio of the widgets as this will affect whether or not the dashboard completely fills the tablet’s screen.
The default is [120, 120] (width, height). This works well for a regular iPad.

• widget_size - the number of grid blocks each widget will be by default if not specified

• widget_margins - the size of blank space between widgets.

• rows - the total number of rows in the dashboard. This will help with spacing, but is optional for dashboards
with fewer than 15 rows

• columns - the number of columns the dashboard will have.

• scalable - if set to False this parameter will disable resizing and double-tap zooming on iOS devices,
default is not to disable zooming.

• global_parameters - a list of parameters that will be applied to every widget. If the widget does not
accept that parameter, it will be ignored. Global parameters can be overridden at the widget definition if desired.
This is useful for instance if you want to use commas as decimals for all of your widgets. This will also apply
to widgets defined with just their entity ids so they will not require a formal widget definition just to change
the decimal separator. The namespace parameter will be explained further in the namespace section of this
document. Within the global parameters it is also possible to set parameters at the device level by including a
device entry (see above for an example). Under device you can add an entry for any widget type, then under

146 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

that, list global parameters that will be applied to just that widget type. For instance, in the example above, the
default step size for all media players is set to 5% rather than the default 10%.

The very simplest dashboard needs a layout so it can understand where to place the widgets. We use a layout
directive to tell HADashboard how to place them. Here is an example:

layout:
- light.hall, light.living_room, input_boolean.heating
- media_player(2x1), sensor.temperature

As you can see, here we are referring directly to native Home Assistant entities. From this, HADashboard is able to
figure out the right widget type and grab its friendly name and add it to the dashboard. For the clock and weather
widgets there is no associated entity id so just your clock.clock or weather.weather.

The layout command is intended to be visual in how you layout the widgets. Each layout entry represents a row on
the dashboard; each comma-separated widget represents a cell on that row.

Widgets can also have a size associated with them - that is the (2x1) directive appended to the name. This is simply
the width of the widget in columns and the height of the widget in rows. For instance, (2x1) would refer to a widget
2 cells wide and 1 cell high. If you leave of the sizing information, the widget will use the widget_size dashboard
parameter if specified, or default to (1x1) if not. HADashboard will do its best to calculate the right layout from
what you give it but expect strange behavior if you add too many widgets on a line.

For a better visual cue, you can lay the widgets out with appropriate spacing to see what the grid will look like more
intuitively:

layout:
- light.hall, light.living_room, input_boolean.heating
- media_player(2x1), sensor.temperature

. . . and so on.

Make sure that the number of widths specified adds up to the total number of columns, and don’t forget to take into
account widgets that are more than one row high (e.g., the weather widget here).

If you want a blank space, you can use the special widget name spacer. To leave a whole row empty, just leave an
entry for it with no text. For instance:

- light.hall, light.living_room, input_boolean.heating
-
- media_player(2x1), sensor.temperature

The above would leave the 2nd row empty. If you want more than one empty line use empty as follows”:

- light.hall, light.living_room, input_boolean.heating
- empty: 2
- media_player(2x1), sensor.temperature

This would leave the 2nd and 3rd rows empty.

And that is all there to it, for a simple one file dashboard.

12.1.2 Detailed Widget Definition

The approach above is ok for simple widgets like lights, but HADashboard has a huge range of customization options.
To access these, you need to define the widget along with its associated parameters formally.

To define a widget, simply add lines elsewhere in the file. Give it a name, a widget type and a number of optional
parameters like this:

12.1. Dashboard Creation 147

AppDaemon Documentation, Release 4.0.7

weather_widget:
widget_type: weather
units: "°F"

Here we have defined a widget of type “weather” and given it an optional parameter to tell it what units to use
for temperature. Each widget type will have different required parameters, refer to the documentation below for a
complete list for each type. All widgets support ways to customize colors and text sizes as well as attributes they need
to understand how to link the widget to Home Assistant, such as entity_ids.

Lets look at a couple more examples of widget definitions:

andrew_presence:
widget_type: device_tracker
title: Andrew
device: andrews_iphone

clock:
widget_type: clock

garage:
widget_type: switch
title: Garage
entity: switch.garage_door
icon_on: fas-car
icon_off: fas-car
warn: 1

light_level:
widget_type: sensor
title: Light Level
units: "lux"
precision: 0
shorten: 1
entity: sensor.side_multisensor_luminance_25_3

mode:
widget_type: sensor
title: House Mode
entity: input_select.house_mode

porch_motion:
widget_type: binary_sensor
title: Porch
entity: binary_sensor.porch_multisensor_sensor_27_0

side_temperature:
widget_type: sensor
title: Temperature
units: "°F"
precision: 0
entity: sensor.side_temp_corrected

side_humidity:
widget_type: sensor
title: Humidity
units: "%"
precision: 0

(continues on next page)

148 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

entity: sensor.side_humidity_corrected

weather:
widget_type: weather
units: "°F"

wendy_presence:
widget_type: device_tracker
title: Wendy
device: wendys_iphone

Now, instead of an entity id, we refer to the name of the widgets we just defined:

layout:
- clock(2x1), weather(2x2), side_temperature(1x1), side_humidity(1x1), andrew_

→˓presence(1x1), wendy_presence(1x1)
- mode(2x1), light_level(2x1), porch_motion(1x1), garage(1x1)

It is also possible to add a widget from a standalone file. The file will contain a single widget definition. To create a
clock widget this way we would make a file called clock.yaml and place it in the dashboard directory along with
the dashboard. The contents would look something like this:

widget_type: clock
widget_style: "color: red"

Note that the indentation level starts at 0. To include this file, just reference a widget called clock in the layout, and
HADashboard will automatically load the widget.

A file will override a native entity so that you can create your dashboard just using entities, but if you want to customize
a specific entity, you can just create a file named <entity_name>.yaml and put the settings in there. You can also
override entity names by specifying a widget of that name in the same or any other file, which will take priority over
a standalone yaml file.

And that is all there to it, for a simple one file dashboard.

12.2 Advanced Dashboard Definition

When you get to the point where you have multiple dashboards, you may want to take a more modular approach. For
example, you will find that in many cases, you want to reuse parts of other dashboards. For instance, I have a common
header for mine consisting of a row or two of widgets I want to see on every dashboard. I also have a footer of controls
to switch between dashboards that I want on each dashboard as well.

To facilitate this, it is possible to include additional files, inline to build up dashboards in a more modular fashion.
These additional files end in .yaml to distinguish them from top-level dashboards. They can contain additional
widget definitions and also optionally their own layouts.

The sub-files are included in the layout using a variation of the layout directive:

layout:
- include: top_panel

This will look for a file called top_panel.yaml in the dashboards directory, then include it. There are a couple of
different ways this can be used.

12.2. Advanced Dashboard Definition 149

AppDaemon Documentation, Release 4.0.7

• If the yaml file includes its own layouts directive, the widgets from that file will be placed as a block, in the way
described by its layout, making it reusable. You can change the order of the blocks inclusion by moving wherein
the original layout directive you include them.

• If the yaml file just includes widget definitions, it is possible to perform the layout in the higher level dash if you
prefer so you still get an overall view of the dashboard. This approach has the benefit that you can be completely
flexible in the layout whereas the first method defines fixed layouts for the included blocks.

I prefer the completely modular approach - here is an example of a full top-level dashboard created in that way:

title: Main Panel
widget_dimensions: [120, 120]
widget_margins: [5, 5]
columns: 8

layout:
- include: top_panel
- include: main_middle_panel
- include: mode_panel
- include: bottom_panel

As you can see, it includes four modular sub-dashes. Since these pieces all have their own layout information there
is no need for additional layout in the top-level file. Here is an example of one of the self contained submodules
(mode_panel.yaml):

clock:
widget_type: clock

weather:
widget_type: weather
units: "°F"

side_temperature:
widget_type: sensor
title: Temperature
units: "°F"
precision: 0
entity: sensor.side_temp_corrected

side_humidity:
widget_type: sensor
title: Humidity
units: "%"
precision: 0
entity: sensor.side_humidity_corrected

andrew_presence:
widget_type: device_tracker
title: Andrew
device: andrews_iphone

wendy_presence:
widget_type: device_tracker
title: Wendy
device: dedb5e711a24415baaae5cf8e880d852

mode:
widget_type: sensor

(continues on next page)

150 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

title: House Mode
entity: input_select.house_mode

light_level:
widget_type: sensor
title: Light Level
units: "lux"
precision: 0
shorten: 1
entity: sensor.side_multisensor_luminance_25_3

porch_motion:
widget_type: binary_sensor
title: Porch
entity: binary_sensor.porch_multisensor_sensor_27_0

garage:
widget_type: switch
title: Garage
entity: switch.garage_door
icon_on: fas-car
icon_off: fas-car
warn: 1

layout:
- clock(2x1), weather(2x2), side_temperature, side_humidity, andrew_presence,

→˓wendy_presence
- mode(2x1), light_level(2x1), porch_motion, garage

Now if we take a look at that same layout, but assume that just the widget definitions are in the sub-blocks, we would
end up with something like this - note that we must explicitly lay out each widget we have included in the other files:

title: Main Panel
widget_dimensions: [120, 120]
widget_margins: [5, 5]
columns: 8

layout:
- include: top_panel
- include: main_middle_panel
- include: mode_panel
- include: bottom_panel
- clock(2x1), weather(2x2), side_temperature, side_humidity, andrew_presence,

→˓wendy_presence
- mode(2x1), light_level(2x1), porch_motion, garage
- wlamp_scene, don_scene, doff_scene, dbright_scene, upstairs_thermometer,

→˓downstairs_thermometer, basement_thermometer, thermostat_setpoint
- obright_scene, ooff_scene, pon_scene, poff_scene, night_motion, guest_mode,

→˓cooling, heat
- morning(2x1), day(2x1), evening(2x1), night(2x1)
- load_main_panel, load_upstairs_panel, load_upstairs, load_downstairs, load_

→˓outside, load_doors, load_controls, reload

In this case, the actual layout including a widget must be after the include as you might expect.

A few caveats for loaded subfiles:

• Sub files can include other subfiles to a maximum depth of 10 - please avoid circular references!

12.2. Advanced Dashboard Definition 151

AppDaemon Documentation, Release 4.0.7

• When layout information is included in a subfile, the subfile must comprise 1 or more complete dashboard rows
- partial rows or blocks are not supported.

As a final option, you can create widget definitions in the main file and use them in the layout of the header/footer/etc.
For example, if you have a header that has a label on it that lists the room that the dashboard is associated with, you
can put the label widget definition in the header file but all the pages get the same message. If you put the label widget
definition in the main file for the room, and reference it from the layout in the header, each page has the right name
displayed in the header.

For example:

clock:
widget_type: clock

layout:
- label(2x2),clock(2x2)

In this example of a header, we reference a clock and a label in the layout. We can re-use this header, but in order to
make the label change for every page we use it on we actually define it in the dashboard file itself, and include the
header in the layout:

title: Den Panel
widget_dimensions: [120, 120]
widget_margins: [5, 5]
columns: 8

label:
widget_type: label
text: Welcome to the Den

layout:
- include: header

12.3 Widget Customization

Widgets allow customization using arbitrary CSS styles for the individual elements that make up the widget. Every
widget has a ‘widget_style argument to apply styles to the whole widget, as well as one or more additional style
arguments that differ for each widget. To customize a widget background, for instance:

clock:
widget_type: clock
widget_style: "background: white;"

As is usual with CSS you can feed it multiple parameters at once, e.g.:

clock:
widget_type: clock
widget_style: "background: white; font-size: 150%;"

You can use any valid CSS style here although you should probably steer away from some of the formatting types as
they may interact badly with HADashboards formatting. Widget level styles will correctly override just the style in
the skin they are replacing.

In the case of the clock widget, it also supports date_style and time_style to modify those elements accord-
ingly:

152 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

clock:
widget_type: clock
widget_style: "background: white"
date_style: "color: black"
time_style: "color: green"

Since date_style and time_style are applied to more specific elements, they will override widget_style.
Also note that some widget styles may be specified in the widget’s CSS, in which case that style will override
widget_style but not the more specific styles.

12.4 State and state text

Some widgets allow you to display not only an icon showing the state but also text of the state itself. The following
widgets allow this:

• scene

• binary_sensor

• icon

• switch

• device_tracker

• script

• lock

• cover

• input_boolean

In order to enable this, just add:

state_text: 1

to the widget definition. This will then make the widget show the HA state below the icon. Since native HA state is
not always very pretty, it is also possible to map this to better values, for instance in a different language than English.

To add a state map, just add a state_map list to the widget definition listing the HA states and what you actually want
to be displayed. For instance:

state_map:
"on": Aan
"off": Uit

One wrinkle here is that YAML over-enthusiastically “helps” by interpreting things like on and off as booleans so
the quotes are needed to prevent this.

12.5 Titles

Each widget could have custom text for title a title2. You can use the option to force the widget to use text from entity
friendly name attribute.

• title_is_friendly_name - set title as entity friendly name if exists

• title2_is_friendly_name - set title2 as entity friendly name if exists

12.4. State and state text 153

AppDaemon Documentation, Release 4.0.7

Example:

title_is_friendly_name: 1
title2_is_friendly_name: 1

12.6 Icons

Widgets that allow the specification of icons have access to both Font Awesome and Material Design Icons. To specify
an icon simply use the prefix mdi- for Material Design, and the appropriate style prefix for Font Awesome Icons.

icon_on: fas-bell
icon_off: mdi-cancel

In addition, the widget can be configured to use whatever icon is defined for it in Home Assistant by setting the
parameter:

use_hass_icon: 1

This can also be set at the dashboard level as a global parameter.

12.7 External Commands

The dashboard can accept commands from external systems to prompt actions, such as navigation to different pages.
These can be achieved through a variety of means:

• AppDaemon API Calls

• HASS Automations/Scripts

• Alexa Intents

The mechanism used for this is HASS custom events. AppDaemon has its own API calls to handle these events, for
further details see the AppDaemon API Pages. The custom event name is ad_dashboard and the dashboard will
respond to various commands with associated data.

To create a suitable custom event within a HASS automation, script or Alexa Intent, simply define the event and
associated data as follows (this is a script example):

alias: Navigate
sequence:
- event: ad_dashboard

event_data:
command: navigate
timeout: 10
target: SensorPanel
sticky: 0

These following arguments are optional and can be used to determine if a given device or dashboard should execute
the command or not:

deviceid: If set, only the device(s) which has the same deviceid will execute the command. See below how to
set a deviceid. dashid: If set, all devices currently on a dashboard which the title contains the substring defined by
dashid will execute the command. ex: if dashid is set to “kichen”, it will match devices which are on “kitchen lights”,
“kitchen sensors”, “ipad - kitchen”, etc.

154 Chapter 12. Dashboard Creation

http://fontawesome.io/cheatsheet/
https://materialdesignicons.com/
API.html

AppDaemon Documentation, Release 4.0.7

12.7.1 Setting a deviceid

A “device” is a combination of machine+browser, so a computer+firefox could be one device, while the same com-
puter+safari can be another. To set the deviceid of a device add the `deviceid=your_deviceid` parameter
to the dashboard url, for instance:

http://192.168.1.20:5050/mypanel?deviceid=kitchentablet

HADashboard will try to store the deviceid on the device so you don’t need to use this parameter everytime. You may
use it again if you want to set a new deviceid or if you cleaned device’s cookies or the device doesnt support it.

The current list of commands supported and associated arguments are as follows:

12.7.2 navigate

Force one or more connected dashboards to navigate to a new page

Arguments:

target - Name of the new Dashboard to navigate to, e.g. SensorPanel - this is not a URL. timeout - length of
time to stay on the new dashboard before returning to the original. This argument is optional, and if not specified, the
navigation will be permanent.

Note that if there is a click or touch on the new panel before the timeout expires, the timeout will be cancelled.

return - dashboard to return to after the timeout has elapsed. sticky - whether or not to return to the original
dashboard after it has been clicked on. The default behavior (sticky=0) is to remain on the new dashboard if
clicked and return to the original otherwise. With sticky=1, clicking the dashboard will extend the amount of time,
but it will return to the original dashboard after a period of inactivity equal to timeout. deviceid: If set, only the
device(s) which has the same deviceid will navigate. dashid: If set, all devices currently on a dashboard which the
title contains the substring defined by dashid will navigate.

12.8 Namespaces

For a full explanation of namespaces see the Writing AppDaemon Apps Section of the guide. Namespaces may
be ignored in HADashboard if only one plugin is in use.

If multiple namespaces are in use, HADashboard is able to specify either at the dashboard level or the widget level
which namespace to use. This is achieved by use of the namespace parameter. This parameter may be specified for
each individual widget if desired. If it is specified as one of the global parameters, it will apply to all widgets but may
be overridden for individual widgets. If not specified as a global parameter, the default namespace will be used for any
widgets that do not override it. For example:

##
Main arguments, all optional
##
title: Main Panel
widget_dimensions: [120, 120]
widget_size: [1, 1]
widget_margins: [5, 5]
columns: 8
global_parameters:

use_comma: 0
precision: 1

(continues on next page)

12.8. Namespaces 155

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

use_hass_icon: 1
Not setting namespace here so the default namespace is used

Clock has no namespace
clock:

widget_type: clock

side_temperature doesn't specify a namespace so will use the default
If we specified a different namespace in the global options it would use that
→˓instead
side_temperature:

widget_type: sensor
title: Temperature
units: "°F"
precision: 0
entity: sensor.side_temp_corrected

side_humidity overrides the default and uses the hass2 namespace
It will use hass2 regardless of any global setting
side_humidity:

namespace: hass2
widget_type: sensor
title: Humidity
units: "%"
precision: 0
entity: sensor.side_humidity_corrected

One caveat to namespaces is that the RSS widget always works with the admin namespace - since the RSS feeds are
supplied by AppDaemon itself, and not one of the plugins.

12.9 Widget Reference

Here is the current list of widgets and their description and supported parameters:

12.9.1 alarm

A widget to report on the state of an alarm and allow code entry

Mandatory Arguments:

• entity - the entity_id of the alarm to be monitored

156 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Style Arguments:

• widget_style

• title_style

• title2_style

• state_style

• panel_state_style

• panel_code_style

• panel_background_style

• panel_button_style

12.9.2 binary_sensor

A widget to monitor a binary_sensor

Mandatory arguments:

• entity - the entity_id of the binary_sensor

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

12.9. Widget Reference 157

AppDaemon Documentation, Release 4.0.7

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

• state_text_style

12.9.3 camera

A widget to display a refreshing camera image on the dashboard.

Mandatory arguments:

• entity the entity_id of the camera

• base_url the URL to your Home Assistant install. If you wish to access your dashboard from an external
network, then this needs to be the external URL to Home Assistant.

Optional Arguments:

• refresh (seconds) - if set, the camera image will refresh every interval. Use 0 to indicate no refresh at all.
Default is 10 seconds for non-streaming cameras and 0 for streaming cameras.

158 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

• stream - If set to on live data will be streamed to the dashboard instead of needing to be refreshed.

Style Arguments:

• widget_style

• title_style

12.9.4 climate

A widget to monitor and control a climate entity

Mandatory arguments:

• entity - the entity_id of the climate entity

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• step - the size of step in temperature when fading the slider up or down

• units - the unit symbol to be displayed

• precision - the number of digits to display after the decimal point

Style Arguments:

• widget_style

• icon_up

• icon_down

• title_style

• title2_style

• level_style

• level2_style

• unit_style

12.9. Widget Reference 159

AppDaemon Documentation, Release 4.0.7

• unit2_style

• level_up_style

• level_down_style

12.9.5 clock

A simple 12 hour clock with the date. Not currently very customizable but it will be improved upon.

Mandatory arguments:

None

Optional Arguments:

• time_format - set to “24hr” if you want military time/24 hour clock

• show_seconds - set to 1 if you want to see seconds on the display

• date_format_country - Format the clock in the style of a specific country. This can take a simple value
like us or more complex parameters as described here.

• date_format_options - if using date_format_country you can also add additional options for for-
matting as described here.. For example:

clock:
widget_type: clock
date_format_country: "ro"
date_format_options:

weekday: "short"
day: "numeric"
month: "numeric"

Style Arguments:

• widget_style

• time_style

• date_style

160 Chapter 12. Dashboard Creation

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl#Locale_identification_and_negotiation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toLocaleDateString

AppDaemon Documentation, Release 4.0.7

12.9.6 cover

images/cover.png

A widget to monitor and activate a cover. At this time only the open and close actions are supported.

Mandatory arguments:

• entity - the entity_id of the cover

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

12.9.7 device_tracker

12.9. Widget Reference 161

AppDaemon Documentation, Release 4.0.7

A Widget that reports on device tracker status. It can also be optionally be used to toggle the status between “home”
and “not_home”.

Mandatory Arguments:

• device - name of the device from known_devices.yaml, not the entity_id.

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• enable - set to 1 to enable the widget to toggle the device_tracker status

• state_text

• state_map

• active_map

Active map is used to specify states other than “home” that will be regarded as active, meaning the icon will light up.
This can be useful if tracking a device tracker within the house using beacons for instance.

Example:

wendy_presence_mapped:
widget_type: device_tracker
title: Wendy
title2: Mapped
device: wendys_iphone
active_map:
- home
- house
- back_yard
- upstairs

In the absence of an active map, only the state home will be regarded as active.

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

• state_text_style

162 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

images/entity_picture.png

12.9.8 entitypicture

A widget to display entity picture

Mandatory arguments:

• entity - the entity to display entity_picture attribute

Optional Arguments:

• title - the title displayed on the tile.

• base_url - URL to prepend before content of entity_picture.

Example:

entitypicture1:
widget_type: entitypicture
title: Weather by YR
entity: sensor.yr_symbol

Example showing artwork of just playing an album on media player: (tested with Google Home)

entitypicture2:
widget_type: entitypicture
entity: media_player.bedroom
base_url: https://my_domain.duckdns.org:8123
image_style: "top: 0; bottom: 0; left: 0; right: 0;"

Style Arguments:

• widget_style

• title_style

• image_style

12.9.9 gauge

A widget to report on numeric values for sensors in Home Assistant in a gauge format.

Mandatory Arguments:

• entity - the entity_id of the sensor to be monitored

• max - maximum value to show

12.9. Widget Reference 163

AppDaemon Documentation, Release 4.0.7

• min - minimum value to show

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• units - the unit symbol to be displayed, if not specified HAs unit will be used, specify “” for no units

Style Arguments:

• widget_style

• title_style

• title2_style

• low_color

• med_color

• high_color

• bgcolor

• color

Note that unlike other widgets, the color settings require an actual color, rather than a CSS style.

12.9.10 group

A widget to monitor and control a group of lights

164 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

Mandatory arguments:

• entity - the entity_id of the group

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• monitored_entity - the actual entity to monitor

Groups currently do no report back state changes correctly when attributes light brightness are changed. As a
workaround, instead of looking for state changes in the group, we use monitored_entity instead. This is not
necessary of there are no dimmable lights in the group; however, if there are, it should be set to the entity_id of one of
the dimmable group members.

Style Arguments:

• widget_style

• icon_on

• icon_off

• icon_up

• icon_down

• title_style

• title2_style

• icon_style_active

• icon_style_inactive

• text_style

• level_style

• level_up_style

• level_down_style

12.9.11 icon

12.9. Widget Reference 165

AppDaemon Documentation, Release 4.0.7

A widget to monitor the state of an entity and display a different icon and style for each listed state, and is configured
in a similar manner to the following:

icon:
title: icon
widget_type: icon
entity: binary_sensor.basement_door_sensor
state_text: 1
icons:
"active":

icon: fas-glass
style: "color: green"
post_service_active:

service: homeassistant/turn_on
entity_id: script.deactivate

"inactive":
icon: fas-repeat
style: "color: blue"
post_service_active:

service: homeassistant/turn_on
entity_id: script.activate

"idle":
icon: fas-frown
style: "color: red"

"default":
icon: fas-rocket
style: "color: cyan"

The icons list is mandatory, and each entry must contain both an icon and a style entry. It is recommended that quotes
are used around the state names, as without these, YAML will translate states like on and off to true and false.

Each icon can have a service call assigned by post_service_active entry - on icon click, specified service like HA script
or AD sequence is called for currently active state.

The default entry icon and style will be used if the state doesn’t match any in the list - meaning that it is not necessary
to define all states if only 1 or 2 actually matter.

Mandatory arguments:

• entity - the entity_id of the binary_sensor

• icons - a list of icons, styles and service calls to be applied for various states

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

• update_delay - seconds to wait before processing state update

Style Arguments:

• widget_style

166 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

• title_style

• title2_style

• state_text_style

12.9.12 iframe

A widget to display other content within the dashboard

Mandatory arguments:

• url_list - a list of 1 or more URLs to cycle though. or

• img_list - a list of 1 or more Image URLs to cycle through.

Optional Arguments:

• title - the title displayed on the tile

• refresh - (seconds) if set, the iframe widget will progress down its list every refresh period, returning to the
beginning when it hits the end. Use this in conjunction with a single entry in the url_list to have a single
url refresh at a set interval.

For regular HTTP sites, use the url_list argument, for images the img_list argument should work better.

Example:

iframe:
widget_type: iframe
title: Cats
refresh: 60
url_list:

(continues on next page)

12.9. Widget Reference 167

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

- https://www.pexels.com/photo/grey-and-white-short-fur-cat-104827/
- https://www.pexels.com/photo/eyes-cat-coach-sofas-96938/
- https://www.pexels.com/photo/silver-tabby-cat-lying-on-brown-wooden-surface-

→˓126407/
- https://www.pexels.com/photo/kitten-cat-rush-lucky-cat-45170/
- https://www.pexels.com/photo/grey-fur-kitten-127028/
- https://www.pexels.com/photo/cat-whiskers-kitty-tabby-20787/
- https://www.pexels.com/photo/cat-sleeping-62640/

Content will be shown with scroll bars, which can be undesirable. For images this can be alleviated by using an image
resizing service such as the one offered by Google.

weather_frame:
widget_type: iframe
title: Radar
refresh: 300
frame_style: ""
img_list:

- https://images1-focus-opensocial.googleusercontent.com/gadgets/proxy?
→˓url=https://icons.wxug.com/data/weather-maps/radar/united-states/hartford-
→˓connecticut-region-current-radar-animation.gif&container=focus&refresh=240&resize_
→˓h=640&resize_h=640

- https://images1-focus-opensocial.googleusercontent.com/gadgets/proxy?
→˓url=https://icons.wxug.com/data/weather-maps/radar/united-states/bakersfield-
→˓california-region-current-radar.gif&container=focus&refresh=240&resize_h=640&resize_
→˓h=640

Style Arguments:

• widget_style

• title_style

12.9.13 input_boolean

A widget to monitor and activate an input_boolean

Mandatory arguments:

• entity - the entity_id of the input_boolean

168 Chapter 12. Dashboard Creation

https://carlo.zottmann.org/posts/2013/04/14/google-image-resizer.html

AppDaemon Documentation, Release 4.0.7

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

12.9.14 input_datetime

A widget to monitor and control an input_datetime

Mandatory arguments:

• entity - the entity_id of the input_datetime

12.9. Widget Reference 169

AppDaemon Documentation, Release 4.0.7

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Style Arguments:

• widget_style

• title_style

• title2_style

• container_style

• date_style

• time_style

12.9.15 input_number

A widget to monitor and control an input_number

Mandatory arguments:

• entity - the entity_id of the input_number

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• units - the unit symbol to be displayed

• use_comma - if set to one, a comma will be used as the decimal separator

Style Arguments:

• title_style

• title2_style

170 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

• minvalue_style

• maxvalue_style

• value_style

• slider_style

• slidercontainer_style

• widget_style

12.9.16 input_select

A widget to display and select values from an input_select entity in Home Assistant.

Mandatory Arguments:

• entity - the entity_id of the sensor to be monitored

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Style Arguments:

• widget_style

• title_style

• title2_style

• select_style

• selectcontainer_style

12.9.17 input_slider

An alternate widget to monitor and control an input number, using plus and minus buttons instead of a slider.

12.9. Widget Reference 171

AppDaemon Documentation, Release 4.0.7

Mandatory arguments:

• entity - the entity_id of the input_number

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• units - the unit symbol to be displayed

• use_comma - if set to one, a comma will be used as the decimal separator

Style Arguments:

• title_style

• title2_style

• minvalue_style

• maxvalue_style

• value_style

• slider_style

• slidercontainer_style

• widget_style

12.9.18 input_text

172 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

A widget to monitor and control an input_text

Mandatory arguments:

• entity - the entity_id of the input_text

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Style Arguments:

• widget_style

• title_style

• title2_style

• container_style

• text_style

12.9.19 javascript

A widget to run an arbitrary JavaScript command.

Mandatory arguments:

• command - the JavaScript command to be run.

e.g.

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

12.9. Widget Reference 173

AppDaemon Documentation, Release 4.0.7

Style Arguments:

• icon_active

• icon_inactive

• widget_style

• title_style

• title2_style

• icon_active_style

• icon_inactive_style

12.9.20 label

A widget to show a simple static text string

Mandatory arguments:

None

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• text - the text displayed on the tile

Style Arguments:

• widget_style

• title_style

• title2_style

• value_style - changes the style from the text

12.9.21 light

A widget to monitor and control a dimmable light

174 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

Mandatory arguments:

• entity - the entity_id of the light

Optional Arguments:

• icon_on

• icon_off

• title - the title displayed on the tile

• title2 - a second line of title text

• on_attributes - a list of supported HA attributes to set as initial values for the light.

Note that rgb_color and xy_color are not specified with list syntax as in Home Assistant scenes. See below for
examples.

testlight2:
widget_type: light
entity: light.office_2
title: office_2
on_attributes:

brightness: 100
color_temp: 250

or:

testlight2:
widget_type: light
entity: light.office_2
title: office_2
on_attributes:

brightness: 100
rgb_color: 128, 34, 56

or:

testlight2:
widget_type: light
entity: light.office_2
title: office_2
on_attributes:

brightness: 100
xy_color: 0.4, 0.9

12.9. Widget Reference 175

AppDaemon Documentation, Release 4.0.7

Style Arguments:

• widget_style

• icon_on

• icon_off

• icon_up

• icon_down

• title_style

• title2_style

• icon_style_active

• icon_style_inactive

• text_style

• level_style

• level_up_style

• level_down_style

12.9.22 lock

A widget to monitor and activate a lock

Note that unlike HASS, Dashboard regards an unlocked lock as active. By contrast, the HASS UI shows a locked lock
as “on”. Since the purpose of the dashboard is to alert at a glance on anything that is unusual, I chose to make the
unlocked state “active” which means in the default skin it is shown as red, whereas a locked icon is shown as gray.
You can easily change this behavior by setting active and inactive styles if you prefer.

Mandatory arguments:

• entity - the entity_id of the lock

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

176 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

• state_map

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

12.9.23 london_underground

images/london_underground.png

A widget to report on the status of a London Underground line and provide the reason for delays if there are any.
Requires the London Underground sensor to be configured in Home Assistant. This widget is designed to be a 2x2
tile.

It is recommended to update the background style to reflect the color of the underground line. An example would be
as follows:

widget_style: "background-color: #0098D4"

The colors of the various lines are: - Bakerloo: #B36305 - Central: #E32017 - Circle: #FFD300 - District: #00782A
- DLR: #00A4A7 - Hammersmith & City: #F3A9BB - Jubilee: #A0A5A9 - London Overground: #EE7C0E -
Metropolitan: #9B0056 - Northern: #000000 - Piccadilly: #003688 - Victoria: #0098D4 - Waterloo & City: #95CDBA

For smaller dashboards the Description text can be too long to fit in the widget properly. In that case, hide the text as
follows:

state_text_style: "display: none"

Mandatory arguments:

• entity - the entity to be monitored

Optional Arguments:

• title - the title displayed on the tile

12.9. Widget Reference 177

AppDaemon Documentation, Release 4.0.7

Style Arguments:

• state_text_style

• text_style

• title_style

• widget_style

12.9.24 media_player

A widget to monitor and control a media player

Mandatory arguments:

• entity - the entity_id of the media player

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• truncate_name - if specified, the name of the media will be truncated to this length.

• step - the step (in percent) that the volume buttons will use. (default, 10%)

Style Arguments:

• widget_style

• icon_on

178 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

• icon_off

• icon_up

• icon_down

• title_style

• title2_style

• icon_style_active

• icon_style_inactive

• text_style

• level_style

• level_up_style

• level_down_style

12.9.25 mode

A widget to track the state of an input_select by showing active when it is set to a specific value. Also allows
scripts to be run when activated.

Mandatory arguments:

• entity - the entity_id of the input_select

• mode - value of the input select to show as active

• script - script to run when pressed

• state_text

• state_map

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

12.9. Widget Reference 179

AppDaemon Documentation, Release 4.0.7

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

12.9.26 navigate

A widget to navigate to a new URL, intended to be used for switching between dashboards.

Mandatory arguments:

None, but either url or dashboard must be specified.

Optional Arguments:

• url - a url to navigate to. Use a full URL including the http:// or https:// part.

• dashboard - a dashboard to navigate to e.g. MainPanel

• title - the title displayed on the tile

• args - a list of arguments.

• skin - Skin to use with the new screen (for HADash URLs only)

• forward_parameters - a list of URL parameters that should be forwarded from the current dash-
board URL to the next dashboard. For example, if the current dashboard was called with “&devi-
ceid=1234&otherparameter=foo”, adding “deviceid” to forward_parameterswill preserve “deviceid” and
discard “otherparameter=foo”. You may add “all” to the forward_parameters to forward all parameters,
except “timeout”, “return”, “sticky” as this can cause problems. If forward_parameters is not used, then
only skin is preserved.

For an arbitrary URL, Args can be anything. When specifying a dashboard parameter, args have the following meaning:

• timeout - length of time to stay on the new dashboard

180 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

• return - dashboard to return to after the timeout has elapsed.

• sticky - whether or not to return to the original dashboard after it has been clicked on. The default be-
havior (sticky=0) is to remain on the new dashboard if clicked and return to the original otherwise. With
sticky=1`, clicking the dashboard will extend the amount of time, but it will return to the original dashboard
after a period of inactivity equal to timeout.

Both timeout and return must be specified.

If adding arguments, use the args variable. Do not append them to the URL or you may break skinning. Add arguments
like this:

some_widget:
widget_type: navigate
title: Amazon
url: http://amazon.com
args:

arg1: fred
arg2: jim

or:

some_widget:
widget_type: navigate
title: Sensors
dashboard: Sensors
args:

timeout: 10
return: Main

Style Arguments:

• icon_active

• icon_inactive

• widget_style

• title_style

• title2_style

• icon_active_style

• icon_inactive_style

12.9.27 person

A Widget that reports on the status of a person. It can also be optionally be used to toggle the status between “home”
and “not_home”.

Mandatory Arguments:

• entity - entity of the person, e.g. person.andrew.

12.9. Widget Reference 181

AppDaemon Documentation, Release 4.0.7

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• enable - set to 1 to enable the widget to toggle the person status

• state_text

• state_map

• active_map

Active map is used to specify states other than “home” that will be regarded as active, meaning the icon will light up.
This can be useful if tracking a device tracker within the house using beacons for instance.

Example:

wendy_presence_mapped:
widget_type: person
title: Wendy
title2: Mapped
entity: person.wendy
active_map:
- home
- house
- back_yard
- upstairs

In the absence of an active map, only the state home will be regarded as active.

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

• state_text_style

182 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

12.9.28 radial

A widget to display a numeric value as a gauge

Mandatory Arguments:

• entity - the entity_id of the alarm to be monitored

• settings - a list if values describing the gauge with the following entries:

• title - title of the guage

• minValue - minimum value to display

• maxValue - maximum value to display

• majorTicks - Where to mark major values, a list

• highlights - color ranges, a list

See the example below:

your_radial:
widget_type: radial
entity: sensor.your_sensor
settings:
title: any title
minValue: 0
maxValue: 100
majorTicks: [0,20,40,60,80,100]
highlights: [{'from': 0, 'to': 18, 'color': 'rgba(0,0, 255, .3)'},{'from': 25, 'to

→˓': 100, 'color': 'rgba(255, 0, 0, .3)'}]

Optional Arguments:

None

Style Arguments:

None

12.9.29 reload

A widget to reload the current dashboard.

12.9. Widget Reference 183

AppDaemon Documentation, Release 4.0.7

Mandatory arguments:

None.

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

Style Arguments:

• icon_active

• icon_inactive

• widget_style

• title_style

• title2_style

• icon_active_style

• icon_inactive_style

12.9.30 rss

A widget to display an RSS feed.

Note that the actual feeds are configured in appdaemon.yaml as follows:

hadashboard:

rss_feeds:
- feed: <feed_url>

target: <target_name>
- feed: <feed url>

target: <target_name>

...

rss_update: <feed_refresh_interval>

• feed_url - fully qualified path to rss feed, e.g., http://rss.cnn.com/rss/cnn_topstories.rss

184 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

• target name - the entity of the target RSS widget in the dashboard definition file. This must be an arbitrary
name prepended by rss. - e.g., rss.cnn_news

• feed_refresh_interval - how often AppDaemon will refresh the RSS feeds

There is no limit to the number of feeds you configure, and you will need to configure one RSS widget to display each
feed.

Mandatory Arguments:

• entity - the name of the configured feed - this must match the target_name full target name configured in
the AppDaemon configuration e.g. rss.cnn_news

• interval - the period between display of different items within the feed

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• recent - the number of most recent stories that will be shown. If not specified, all stories in the feed will be
shown.

• show_description - if set to 1 the widget will show a short description of the story as well as the title.
Default is 0

Style Arguments:

• widget_style

• title_style

• title2_style

• text_style

12.9. Widget Reference 185

AppDaemon Documentation, Release 4.0.7

12.9.31 scene

A widget to activate a scene

Mandatory arguments:

• entity - the entity_id of the scene

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

12.9.32 script

A widget to run a script

Mandatory arguments:

• entity - the entity_id of the script

186 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

• enabled - if set to 0 the switch cant be pressed but only shows status

• momentary - after the set amount of milliseconds the old state returns (momentary button)

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

12.9.33 scene

images/sequence.png

A widget to run a sequence

Mandatory arguments:

• entity - the entity_id of the sequence e.g. sequence.office_on

12.9. Widget Reference 187

AppDaemon Documentation, Release 4.0.7

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

12.9.34 sensor

A widget to report on values for any sensor in Home Assistant

The widget will detect whether or not it is showing a numeric value, and if so, it will use the numeric style. If
it is showing text, it will use the text style, which among other things makes the text size smaller. To display an
attribute of a sensor rather than the state itself add the attribute to the end of the sensor name. For example, to
display the description of the sensor.dark_sky_summary sensor you would use the following entity definition: “sen-
sor.dark_sky_summary.Description”.

Note that you can define a sub_entity to be an attribute of the entity using the entity_to_sub_entity_attribute argument,
or an entity as an attribute of the sub_entity using the sub_entity_to_entity_attribute.

Mandatory Arguments:

• entity - the entity_id of the sensor to be monitored

Or

• sub_entity - the entity_id of the sensor to be monitored

188 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• units - the unit symbol to be displayed, if not specified HAs unit will be used, specify “” for no units

• precision - the number of decimal places

• shorten - if set to one, the widget will abbreviate the readout for high numbers, e.g. 1.1K instead of 1100

• use_comma - if set to one‘, a comma will be used as the decimal separator

• state_map

• sub_entity - second entity to be displayed in the state text area

• sub_entity_map - state map for the sub_entity

• entity_to_sub_entity_attribute - the attribute of the entity to use as the sub_entity

• sub_entity_to_entity_attribute - the attribute of the sub_entity to use as the entity

Style Arguments:

• widget_style

• title_style

• title2_style

• value_style

• text_style

• unit_style

• container_style

• state_text_style (used for styling of sub_entity)

12.9.35 switch

A widget to monitor and activate a switch

Mandatory arguments:

• entity - the entity_id of the switch

12.9. Widget Reference 189

AppDaemon Documentation, Release 4.0.7

Optional Arguments:

• title - the title displayed on the tile

• title2 - a second line of title text

• state_text

• state_map

• enabled - if set to 0 the switch cant be pressed but only shows status

• momentary - after the set amount of milliseconds the old state returns (momentary button)

Style Arguments:

• icon_on

• icon_off

• widget_style

• icon_style_active

• icon_style_inactive

• title_style

• title2_style

12.9.36 temperature

A widget to report display a temperature using a thermometer style view

Mandatory Arguments:

• entity - the entity_id of the alarm to be monitored

• settings - a list if values describing the thermometer with the following entries:

• minValue - minimum value to display

• maxValue - maximum value to display

• width - width of the widget, set this to the same width as your cell size or less

• height - height of the widget, set this to the same height as your cell size or less

• majorTicks - Where to mark major values, a list

190 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

• highlights - color ranges, a list

See the example below:

your_temperature:
widget_type: temperature
entity: sensor.your_sensor
settings:
minValue: 15
maxValue: 30
width: 120
height: 120
majorTicks: [15,20,25,30]
highlights: [{'from': 15, 'to': 18, 'color': 'rgba(0,0, 255, .3)'},{'from': 24,

→˓'to': 30, 'color': 'rgba(255, 0, 0, .3)'}]

Optional Arguments:

None

Style Arguments:

None

12.9.37 weather

Up to date weather reports. By default, it’s configured to work with dark sky sensor. To use all the features, you need
to add these sensors to monitored_conditions:

• temperature

• apparent_temperature

12.9. Widget Reference 191

AppDaemon Documentation, Release 4.0.7

• temperature_min

• temperature_max

• humidity

• precip_probability

• precip_intensity

• precip_type

• wind_speed

• wind_bearing

• pressure

• icon

To have the forecast displayed set show_forecast to 1. For it to work you additionally, need to add the forecast
option in dark_sky Home Assistant configuration.

forecast:
- 1

Mandatory arguments:

None

Optional Arguments:

• title

• show_forecast - show the forecast

• prefer_icons - use icons instead of text

• forecast_title - title of the forecast if enabled

• sensors - list of sensors used by the widget

You can change the entities used by the widget by overwriting their values in the sensors key in configuration.

Example with default values:

sample_weather:
widget_type: weather
title: Today
show_forecast: 1
prefer_icons: 1
forecast_title: Tomorrow
sensors:
icon: sensor.dark_sky_icon
temperature: sensor.dark_sky_temperature
apparent_temperature: sensor.dark_sky_apparent_temperature
humidity: sensor.dark_sky_humidity
precip_probability: sensor.dark_sky_precip_probability
precip_intensity: sensor.dark_sky_precip_intensity
precip_type: sensor.dark_sky_precip
pressure: sensor.dark_sky_pressure

(continues on next page)

192 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

wind_speed: sensor.dark_sky_wind_speed
wind_bearing: sensor.dark_sky_wind_bearing
forecast_icon: sensor.dark_sky_icon_1
forecast_temperature_min: sensor.dark_sky_daily_low_temperature_1
forecast_temperature_max: sensor.dark_sky_daily_high_temperature_1
forecast_precip_probability: sensor.dark_sky_precip_probability_1
forecast_precip_type: sensor.dark_sky_precip_1

Style Arguments:

• widget_style

• main_style

• unit_style

• sub_style

• sub_unit_style

• title_style

12.9.38 weather_summary

An icon and summary reflecting the weather forecast. Requires dark sky to be configured in Home Assistant and
expects to be used with one of the following sensors:

• sensor.dark_sky_daily_summary

• sensor.dark_sky_hourly_summary

• sensor.dark_sky_summary

12.9. Widget Reference 193

AppDaemon Documentation, Release 4.0.7

Mandatory arguments:

• entity - the entity to be monitored

Optional Arguments:

• title - the title displayed on the tile

Style Arguments:

• state_text_style

• text_style

• title_style

• widget_style

12.10 Skins

HADashboard fully supports skinning and ships with a number of skins. To access a specific skin, append the param-
eter skin=<skin name> to the dashboard URL. Skin names are sticky if you use the Navigate widget to switch
between dashboards and will stay in force until another skin or no skin is specified.

HADashboard currently has the following skins available:

• default - the classic HADashboard skin, very simple

• obsidian, contributed by @rpitera

• zen, contributed by @rpitera

• simplyred, contributed by @rpitera

• glassic, contributed by @rpitera

12.11 Skin development

HADashboard fully supports customization through skinning. It ships with a number of skins courtesy of @rpitera,
and we encourage users to create new skins and contribute them back to the project.

To create a custom skin you will need to know a little bit of CSS. Start off by creating a directory called custom_css
in the configuration directory, at the same level as your dashboards directory. Next, create a subdirectory in
custom_css named for your skin.

The skin itself consists of 2 separate files:

• dashboard.css - This is the base dashboard CSS that sets the widget styles, background, look and feel, etc.

• variables.yaml - This is a list of variables that describe how different elements of the widgets will look.
Using the correct variables you can skin pretty much every element of every widget type.

Dashboard.css is a regular CSS file, and knowledge of CSS is required to make changes to it.

Variables.yaml is really a set of override styles, so you can use fragments of CSS here, basically, anything that you
could normally put in an HTML style tag. Variables .yaml also supports variable expansion to make structuring the

194 Chapter 12. Dashboard Creation

AppDaemon Documentation, Release 4.0.7

file easier. Anything that starts with a $ is treated as a variable that refers back to one of the other yaml fields in the
file.

Here is an example of a piece of a variables.yaml file:

##
Styles
##

white: "#fff"
red: "#ff0055"
green: "#aaff00"
blue: "#00aaff"
purple: "#aa00ff"
yellow: "#ffff00"
orange: "#ffaa00"

gray_dark: "#444"
gray_medium: "#666"
gray_light: "#888"

##Page and widget defaults
background_style: ""
text_style: ""

##These are used for icons and indicators
style_inactive: "color: $gray_light"
style_active: "color: gold"
style_active_warn: "color: gold"
style_info: "color: gold; font-weight: 500; font-size: 250%"
style_title: "color: gold; font-weight: 900"
style_title2: "color: $white"

Here we are setting up some general variables that we can reuse for styling the actual widgets.

Below, we are setting styles for a specific widget, the light widget. All entries are required but can be left blank by
using double-quotes.

light_icon_on: fas-circle
light_icon_off: fas-circle-thin
light_icon_up: fas-plus
light_icon_down: fas-minus
light_title_style: $style_title
light_title2_style: $style_title2
light_icon_style_active: $style_active
light_icon_style_inactive: $style_inactive
light_state_text_style: $white
light_level_style: "color: $gray_light"
light_level_up_style: "color: $gray_light"
light_level_down_style: "color: $gray_light"
light_widget_style: ""

Images can be included - create a sub directory in your skin directory, call it img or whatever you like, then refer to it
in the css as:

/custom_css/<skin name>/<image directory>/<image filename>

One final feature is the ability to include additional files in the header and body of the page if required. This can be
useful to allow additional CSS from 3rd parties or include JavaScript.

12.11. Skin development 195

AppDaemon Documentation, Release 4.0.7

Custom head includes - should be a YAML List inside variables.yaml, e.g.:

head_includes:
- some include
- some other include

Text will be included verbatim in the head section of the doc, use for styles, javascript or 3rd party CSS, etc. etc. It is
your responsibility to ensure the HTML is correct

Similarly, for body includes:

body_includes:
- some include
- some other include

To learn more about complete styles, take a look at the supplied styles to see how they are put together. Start off with
the dashboard.css and variables.yaml from an existing file and edit to suit your needs.

12.12 Javascript

There are a lot of ways to use javascript in Dashboard. You can create custom widgets that will need javascript, use
the javascript widget to trigger a javascript function or you can add javascript directly to the head includes or body
includes.

Custom widgets require their own special .js files, but to trigger a function from the javascript widget or from the body
includes you can create a custom_javascript directory in the configuration directory. All files that are placed
in that directory will automaticly included in Dashboard. All functions you place in a .js file inside that directory will
be available everywhere in dashboard. Remember that you do this on your own responsibility. javscript code in those
files can break Dashboards, and create vulnerabilities.

12.13 Example Dashboards

Some example dashboards are available in the AppDaemon repository:

Dashboards

12.14 A Note on Font Awesome Upgrade

As of AppDaemon 3.0.2, Font Awesome icons have been upgraded from version 4 to version 5. FA Introduced a lot
of breaking changes with this upgrade. While all of HADashboard’s included skins have been updated to reflect this,
any custom skins may need changes, as will any custom icons used within dashboard config files. FA have provided a
table of changed icons here.

To ease the transition further, a legacy mode has been included in HADashboard. This is not enabled by default, but
can be turned on by specifying the following in the hadashboard section of appdaemon.cfg:

fa4compatibility: 1

This is not intended as a permanent fix and may be removed at some point, but for now, this will enable existing skins
and icons to work correctly, giving you an opportunity to work through your configurations and fix things.

While working through the upgrade, it is strongly advised that you clear your browser cache and force recompile all
of your dashboards to flush out references to old icons. This can be done by manually removing the compiled

196 Chapter 12. Dashboard Creation

https://github.com/home-assistant/appdaemon/tree/dev/conf/example_dashboards
https://fontawesome.com/how-to-use/on-the-web/setup/upgrading-from-version-4

AppDaemon Documentation, Release 4.0.7

subdirectory in conf_dir, specifying recompile=1 in the arguments to the dashboard, or setting the hadashboard
option dash_compile_on_start to 1.

12.14. A Note on Font Awesome Upgrade 197

AppDaemon Documentation, Release 4.0.7

198 Chapter 12. Dashboard Creation

CHAPTER 13

HADashboard Widget Development

HADashboard supports a full Widget API intended to simplify the creation of 3rd party widgets. In this guide, we
will describe the APIs and requirements for a widget, the workflow for widget creation, and suggestions on how to
contribute widgets back to HADashboard.

13.1 What is a Widget?

A widget is a contained piece of functionality that can be placed on a Dashboard. In many cases, widgets refer to types
of devices that can be controlled via Home Assistant, but also, widgets can be unrelated, for instance an RSS widget.

There are two main types of widgets, Base Widgets and Derived Widgets. Base Widgets contain all of the
HTML, CSS and JavaScript code to render and run the widget, whereas Derived Widgets are just a structured list of
variables that are passed down to Base Widgets. Base Widgets live in subdirectories, Derived Widgets are simply yaml
files.

The reason for the 2 types of widget is one of design philosophy. The goal is to have relatively few Base Widgets, and
multiple derived widgets that map to them with minor parameter changes. For example, in Home Assistant, a light and
a group are fairly similar and require identical controls and status displays. This makes it possible to create a single
Base Widget and map to it with two separate Derived Widgets. When creating a new Widget type, attempt to do one
of the following in order of preference:

1. Create a new Derived Widget that works with an existing Base Widget

2. Create a new Derived Widget that works with modifications to an existing Base Widget

3. Create a new Derived and Base Widget

We also talk about a third type of widgets, an Instantiated Widget - this refers to an actual widget in a
dashboard configuration file which will have a widget type and a number of specific variables.

199

AppDaemon Documentation, Release 4.0.7

13.2 Creating Custom Widgets

When creating new widgets, in a similar way to custom skins, HADashboard allows the creation of a directory called
custom_widgets in the configuration directory. Any yaml files placed in here will be treated as new Derived
Widgets. Any directories here will be treated as new Base Widgets. If you are creating a new widget you will need
to use a new name for the widget. Base Widgets by convention are stored in directories that are named starting with
base e.g. baselight, or basesuperwidget.

If either a Derived Widget or Base Widget have the same name as an existing widget, the custom widget will be used
in preference to allow existing widgets to be easily modified.

When a widget has been created and tested, and the author desires to contribute the widget back to the community, all
that is required is that the Derived and Base Widgets are placed in the Git Repository in the standard widget directory
(appdaemon/widgets) then a Pull Request may be issued in the usual way.

13.3 Derived Widgets

A derived widget is simply a yaml file with a number of known fields to describe the widget. A secondary function
of derived widgets is to map in CSS variables for skinning.

Lets start with an example - here is the derived widget code for the light widget:

widget_type: baselight
entity: {{entity}}
post_service_active:

service: homeassistant/turn_on
entity_id: {{entity}}

post_service_inactive:
service: homeassistant/turn_off
entity_id: {{entity}}

fields:
title: {{title}}
title2: {{title2}}
icon: ""
units: "%"
level: ""
state_text: ""
icon_style: ""

icons:
icon_on: $light_icon_on
icon_off: $light_icon_off

static_icons:
icon_up: $light_icon_up
icon_down: $light_icon_down

css:
icon_style_active: $light_icon_style_active
icon_style_inactive: $light_icon_style_inactive

static_css:
title_style: $light_title_style
title2_style: $light_title2_style
state_text_style: $light_state_text_style
level_style: $light_level_style
unit_style: $light_unit_style
level_up_style: $light_level_up_style
level_down_style: $light_level_down_style
widget_style: $light_widget_style

200 Chapter 13. HADashboard Widget Development

AppDaemon Documentation, Release 4.0.7

Lets break it down line by line.

13.3.1 Top Level Variables

widget_type: baselight
entity: {{entity}}

Any entries at the top level are simply variables to be passed to the Base Widget. Some of them have special meanings
(listed in the following sections) but any values are allowed and are all passed to the Base Widget. The exception to
this is the widget_type entry, which is required and refers to the Base Widget that this Derived Widget works with.

In the example above, entity is an argument that will be made available to the base widget. The value,
{{entity}} is a simple passthrough from the Instantiated Widget in the Dashboard. The significance of this is
that a Derived Widget may want to hard code specific parameters while passing others through. For example, a Base
Widget may require a service parameter for which service to call to turn a device on. A switch Derived Widget
may hard code this as switch.turn_on while a light derived widget may hard code it as light.turn_on.
Both however require the entity name from the Instantiated widget. In practice, this example is somewhat artificial as
you could use home_assistant.turn_on for both service calls, and in fact, lights and switches have different
Base Widgets, but the concept remains valid.

An example of the above can be seen in action here:

post_service_active:
service: homeassistant/turn_on
entity_id: {{entity}}

post_service_inactive:
service: homeassistant/turn_off
entity_id: {{entity}}

post_service_active and post_service_inactive are both parameters specific to the baselight Base
Widget.

The remaining parameters have special significance and provide required information for the Base Widget.

13.3.2 Fields

fields:
title: {{title}}
title2: {{title2}}
icon: ""
units: "%"
level: ""
state_text: ""
icon_style: ""

Entries in the fields arguments map directly to the HTML fields declared in the Base Widget and must all be present.
Any field that has a defined value will be used to automatically initialize the corresponding value in the widget. This
is useful for static fields such as titles and simplifies the widget code significantly. Fields that are not required to be
initialized must still be present and set to "". Again, it is possible to map values directly from the Instantiated Widget
straight through to the Base Widget.

13.3. Derived Widgets 201

AppDaemon Documentation, Release 4.0.7

13.3.3 Icons

icons:
icon_on: $light_icon_on
icon_off: $light_icon_off

The icons parameter refers to icons that may be in use in the Base Widget. The names must match what the Base
Widget is expecting. These Icons are expected to be manipulated by the Base Widget and are provided as specific
arguments to it. Whilst it is possible to hard code these, the intended use here is to use variables as above. These
variables map back to variables in the skin in use and are duplicated, possibly with different values in different skins.

The corresponding skin entries for these in the default skin are:

light_icon_on: fa-circle
light_icon_off: fa-circle-thin

These could be different in another skin.

In the base widget, there is code to change the icon from the on icon to the off icon in response to a touch or a state
change triggered elsewhere. The Base Widget has access to theses icon names when executing that code.

13.3.4 Static Icons

static_icons:
icon_up: $light_icon_up
icon_down: $light_icon_down

Static icons are similar in concept to fields in that they map directly to fields in the widget and will be prepopulated
automatically under the assumption that they don’t need to change. As with the icons, the actual values are mapped in
the skin.

An example of a static icon might be the plus and minus icons on the climate widget - they may be different in other
skins but don’t need to change once the widget is initialized.

13.3.5 CSS

css:
icon_style_active: $light_icon_style_active
icon_style_inactive: $light_icon_style_inactive

The css parameters are analogous to the icons - they are styles that are expected to be manipulated as part of the
Widget’s operation. They will be made available to the widget at initialization time, and are mapped through the skin.

In the case of the light Base Widget they remain the same, but in a scene, for instance, the touch pad is grey except
when it is activated when it changes to green - these styles are made available to the Base Widget to use for changing
the style when the button is pressed.

13.3.6 Static CSS

css:
static_css:

title_style: $light_title_style
title2_style: $light_title2_style

(continues on next page)

202 Chapter 13. HADashboard Widget Development

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

state_text_style: $light_state_text_style
level_style: $light_level_style
unit_style: $light_unit_style
level_up_style: $light_level_up_style
level_down_style: $light_level_down_style
widget_style: $light_widget_style

The static_css entry is used for styles that are automatically applied to various fields. As with static_icons,
these are expected to be static and are automatically applied when the widget initializes. Again, the variables are
derived from the skin, and refer to things like titles that remain static for the lifetime of the widget.

13.3.7 Empty Values

None of the special sections icons, static_icons, css, static_css can be empty. If no values are required,
simply use the yaml syntax for an empty list - []. e.g.:

static_icons: []

13.3.8 Summary

In summary, a Derived Widget has 2 main functions:

1. Map values from the Instantiated Widget to the Base Widget, supplying hard-coded parameters where necessary

2. Interact with the skin in use to provide the correct styles and icons to the Base Widget

It is technically possible to load a Base Widget into a dashboard directly but this is discouraged as it bypasses the
skinning. For this reason, even if a Base Widget is used for a single type of widget, a Derived Widget is also required.

13.4 Base Widgets

Base Widgets are where all the work actually gets done. To build a Base Widget you will need an understanding of
HTML and CSS as well as proficiency in JavaScript programming. Base Widgets are really just small snippets of
HTML code, with associated CSS to control their appearance, and JavaScript to react to touches, and update values
based on state changes.

To build a new Base Widget, first create a directory in the appropriate place, named for the widget. By convention, the
name of the widget should start with base - this is to avoid confusion in the dashboard creation logic between derived
and base widgets. The directory will contain 3 files, also named for the widget:

hass@Pegasus:/export/hass/src/appdaemon/appdaemon/widgets/baselight$ ls -l
total 16
-rw-rw-r-- 1 hass hass 1312 Mar 19 13:55 baselight.css
-rw-rw-r-- 1 hass hass 809 Mar 19 13:55 baselight.html
-rw-rw-r-- 1 hass hass 6056 Apr 16 10:07 baselight.js
hass@Pegasus:/export/hass/src/appdaemon/appdaemon/widgets/baselight$

The files are:

1. An HTML file that describes the various elements that the widget has, such as titles, value fields, etc. The
HTML file also defines data bindings that the JavaScript piece uses.

2. A CSS File - this describes the basic styles for the widget and is used for placement of elements too

13.4. Base Widgets 203

AppDaemon Documentation, Release 4.0.7

3. A JavaScript file - this file uses the Widget API and contains all of the logic for the widget.

For the purposes of this document, we will provide examples from the baselight Base Widget.

13.4.1 Widget HTML Files

The HTML files exist to provide a basic layout for the widget and insert the styles. They are usually fairly simple.

By convention, the various tag types have styling suitable for some common elements although that can be overidden
in the css file or the skin:

• <h1> is styled for small text such as titles or state text

• <h2> is styled for large icons or text values

• <p> is styled for small unit labels, e.g. %

To assist with programmatically changing values and styles in the HTML, HADashboard uses Knockout From their
web page:

Knockout is a JavaScript library that helps you to create rich, responsive display and editor user interfaces
with a clean underlying data model. Any time you have sections of UI that update dynamically (e.g.,
changing depending on the user’s actions or when an external data source changes), KO can help you
implement it more simply and maintainable.

Knockout bindings are used to set various attributes and the binding types in use are as follows:

• data bind - used for setting text values

• attr, type style - used for setting styles

• attr, type class - used for displaying icons

It is suggested that you familiarize yourself with the bindings in use.

Here is an example of an HTML file.

<h1 class="title" data-bind="text: title, attr:{style: title_style}"></h1>
<h1 class="title2" data-bind="text: title2, attr:{style: title2_style}"></h1>
<h2 class="icon" data-bind="attr:{style: icon_style}"><i data-bind="attr: {class:
→˓icon}"></i></h2>

<p class="state_text" data-bind="text: state_text, attr:{style: state_text_style}"></
→˓p>
<div class="levelunit">
<p class="level" data-bind="text: level, attr:{style: level_style}"></p>
<p class="unit" data-bind="html: units, attr:{style: unit_style}"></p>
</div>
<p class="secondary-icon minus"><i data-bind="attr: {class: icon_down, style: level_
→˓down_style}" id="level-down"></i></p>
<p class="secondary-icon plus"><i data-bind="attr: {class: icon_up, style: level_up_
→˓style}" id="level-up"></i></p>

• The first 2 <h1> tags set up title1 and title2 using a data bind for the values and style attributes to allow
the styles to be set. These styles map back to the various css and static_css supplied as arguments to the
widget and their names must match

• The <h2> tag introduces a large icon, presumably of a lightbulb or something similar. Here, because of the way
that icons work, we are using a class attribute in Knockout to directly set the class of the element which has the
effect of forcing an icon to be displayed

• The is set up to allow the user to toggle the widget on and off and is referred to later in the JavaScript

204 Chapter 13. HADashboard Widget Development

http://knockoutjs.com/index.html

AppDaemon Documentation, Release 4.0.7

• The <div> here is used for grouping the level and unit labels for the light, along with the included <p> tags
which introduce the actual elements

• The last 2 <p> elements are for the up and down icons.

13.4.2 Widget CSS Files

CSS files in widgets are used primarily for positioning of elements since most of the styling occurs in the skins.
Since each widget must have a unique id, the {id}} piece of each selector name will be substituted with a unique id
ensuring that even if there are multiple instances of the same widget they will all behave correctly.

Other than that, this is standard CSS used for laying out the various HTML elements appropriately.

Here is an example that works with the HTML above.

.widget-baselight-{{id}} {
position: relative;

}

.widget-baselight-{{id}} .state_text {
font-size: 85%;

}

.widget-baselight-{{id}} .title {
position: absolute;
top: 5px;
width: 100%;

}

.widget-baselight-{{id}} .title2 {
position: absolute;
top: 23px;
width: 100%;

}

.widget-baselight-{{id}} .state_text {
position: absolute;
top: 38px;
width: 100%;

}

.widget-baselight-{{id}} .icon {
position: absolute;
top: 43px;
width: 100%;

}

.widget-baselight-{{id}} .toggle-area {
z-index: 10;
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 75%;

}

.widget-baselight-{{id}} .level {
display: inline-block;

(continues on next page)

13.4. Base Widgets 205

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

}

.widget-baselight-{{id}} .unit {
display: inline-block;

}

.widget-baselight-{{id}} .levelunit {
position: absolute;
bottom: 5px;
width: 100%;

}

.widget-baselight-{{id}} .secondary-icon {
position: absolute;
bottom: 0px;
font-size: 20px;
width: 32px;
color: white;

}

.widget-baselight-{{id}} .secondary-icon.plus {
right: 24px;

}

.widget-baselight-{{id}} .secondary-icon.plus i {
padding-top: 10px;
padding-left: 30px;

}

.widget-baselight-{{id}} .secondary-icon.minus {
left: 8px;

}

.widget-baselight-{{id}} .secondary-icon.minus i {
padding-top: 10px;
padding-right: 30px;

}

13.4.3 Widget JavaScript Files

The JavaScript file is responsible for glueing all the pieces together:

• Registering callbacks for events

• Registering callbacks for touches

• Updating the fields, icons, styles as necessary

Let’s take a look at a typical JavaScript Widget - the Baselight Widget.

function baselight(widget_id, url, skin, parameters)
{

All widgets are declared with an initial function named for the widget functions within the .js file although they are
technically objects.

206 Chapter 13. HADashboard Widget Development

AppDaemon Documentation, Release 4.0.7

This function is, in fact, the constructor and is initially called when the widget is first loaded. It is handed a number of
parameters:

• widget_id - Unique identifier of the widget

• url - the url used to invoke the widget

• the name of the skin in use

• the parameters supplied by the dashboard for this particular widget

Next we need to set up our self variable:

// Will be using "self" throughout for the various flavors of "this"
// so for consistency ...

self = this

For the uninitiated, JavaScript has a somewhat confused notion of scopes when using objects, as scopes can be inherited
from different places depending on the mechanism for calling into the code. In Widgets, various tricks have been used
to present a consistent view to the user which requires an initial declaration of the self variable. From then on, all calls
pass this variable between calls to ensure consistency. It is recommended that the convention of declaring self =
this at the top of the function then rigidly sticking to the use of self is adhered to, to avoid confusion.

// Initialization

self.widget_id = widget_id

// Parameters may come in useful later on

self.parameters = parameters

Here we are storing the parameters in case we need them later.

// Parameter handling

if ("monitored_entity" in self.parameters)
{

entity = self.parameters.monitored_entity
}
else
{

entity = self.parameters.entity
}

if ("on_brightness" in self.parameters)
{

self.on_brightness = self.parameters.on_brightness
}
else
{

self.on_brightness = 127
}

Here we process the parameters and set up any variables we may need to refer to later on.

The next step is to set up the widget to respond to various events such as button clicks and state changes.

// Define callbacks for on click events
// They are defined as functions below and can be any name as long as the

(continues on next page)

13.4. Base Widgets 207

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

// 'self'variables match the callbacks array below
// We need to add them into the object for later reference

self.OnButtonClick = OnButtonClick
self.OnRaiseLevelClick = OnRaiseLevelClick
self.OnLowerLevelClick = OnLowerLevelClick

var callbacks =
[

{"selector": '#' + widget_id + ' > span', "action": "click", "callback": self.
→˓OnButtonClick},

{"selector": '#' + widget_id + ' #level-up', "action": "click", "callback":
→˓self.OnRaiseLevelClick},

{"selector": '#' + widget_id + ' #level-down', "action": "click", "callback":
→˓self.OnLowerLevelClick},

]

There could be occasions when it is desirable to register for an event, and get the whole event data. This is possible by
registering and passing “DOMEventData” and boolen true, so that dashboard is aware of the fact the entire event data
is required. Below is an example

// Define callbacks for some mouse events
// They are defined as functions below and can be any name as long as the
// 'self'variables match the callbacks array below
// We need to add them into the object for later reference

self.OnMouseEvent = OnMouseEvent

var callbacks =
[

{"selector": '#' + widget_id + ' > span', "action": ["mousedown", "mouseup"],
→˓"DOMEventData": true, "callback": self.OnMouseEvent}

]

Each widget has the opportunity to register itself for button clicks or touches, or any other event type such as change.
This is done by filling out the callbacks array (which is later used to initialize them). Here we are registering 3
callbacks.

Looking at OnButtonClick as an example:

• OnButtonClick is the name of a function we will be declaring later

• self.OnButtonClick is being used to add it to the object

• In Callbacks, we have an entry that connects a jQuery selector to that particular callback, such that when the
element identified by the selector is clicked, the callback in the list will be called.

• action defines the jQuery action type the callback will respond to, e.g. click or change

Once the widget is running, the OnButtonClick function will be called whenever the span in the HTML file is touched.
You may have noticed that in the CSS file we placed the span on top of everything else and made it cover the entire
widget.

Note that there is nothing special about the naming of OnButtonClick - it can be called anything as long as the
correct references are present in the callbacks list.

When subscribing to events that relate to value changes in a widget, such as for instance an input select being changed
by a user, which we must propagate back to Home Assistant, there is an issue with race conditions if we subscribe to
the normal change event. The change event will fire, and our onChange function may be called before the knockout

208 Chapter 13. HADashboard Widget Development

AppDaemon Documentation, Release 4.0.7

binding has an opportunity to update itself, and we will see the old value. To handle this situation, a second type of
event subscription is provided - we will subscribe to the knockout binding changing rather than the control itself. This
is done in a similar way to the previous mechanism, the only difference is that instead of a selector parameter, we use
an observable parameter which is the name of the binding you want to subscribe to. For instance:

{"observable": "selectedoption", "action": "change", "callback": self.onChange}

Both styles of callback may be used together.

Next we will setup the state callbacks:

// Define callbacks for entities - this model allows a widget to monitor multiple
→˓entities if needed
// Initial will be called when the dashboard loads and state has been gathered for
→˓the entity
// Update will be called every time an update occurs for that entity

self.OnStateAvailable = OnStateAvailable
self.OnStateUpdate = OnStateUpdate

var monitored_entities =
[

{"entity": entity, "initial": self.OnStateAvailable, "update": self.
→˓OnStateUpdate}

]

This is a similar concept to tracking state changes and displaying them. For the purposes of a widget, we care about 2
separate things:

1. Getting an initial value for the state when the widget is first loaded

2. Tracking changes to the state over time

The first is accomplished by a callback when the widget is first loaded. We add a callback for the entity we are
interested in and identify which routine will be called initially when the widget is loaded, and which callback will be
called whenever we see a state update. These functions will be responsible for updating the fields necessary to show
initial state and changes over time. How that happens is a function of the widget design, but for instance, a change to
a sensor will usually result in that value being displayed in one of the HTML fields.

Here we are tracking just one entity, but it is possible to register callbacks on as many entities as you need for your
widget.

When that is in place we finalize the initialization:

// Finally, call the parent constructor to get things moving

WidgetBase.call(self, widget_id, url, skin, parameters, monitored_entities, callbacks)

After all the setup is complete, we need to make a call to the object’s parent constructor to start processing, passing
in various parameters, some of which we got from the function call itself, and other like the callbacks that we set up
ourselves. The callback parameters must exist but can be empty, e.g. callbacks = [] - not every widget needs to
respond to touches, not every widget needs to respond to state changes.

After this call completes, the initializer is complete and from now on, activity in the widget is governed by callbacks
either from initial state, state changes or button clicks,

Next, we will define our state callbacks:

// Function Definitions

(continues on next page)

13.4. Base Widgets 209

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

// The StateAvailable function will be called when
// self.state[<entity>] has valid information for the requested entity
// state is the initial state

function OnStateAvailable(self, state)
{

self.state = state.state;
if ("brightness" in state.attributes)
{

self.level = state.attributes.brightness
}
else
{

self.level = 0
}
set_view(self, self.state, self.level)

}

This function was one of the ones that we referred to earlier in the monitored_entities list. Since we identified
this as the initial callback, it will be called with an initial value for the entities state when the widget is first loaded,
but after the constructor function has completed. It is handed a self-reference, and the state for the entity it subscribed
to. What happens when this code is called is up to the widget. In the case of Base Light it will set the icon type
depending on whether the light is on or off, and also update the level. Since this is done elsewhere in the widget, I
added a function called set_view to set these things up. There is also some logic here to account for the fact that in
Home Assistant a light has no brightness level if it is off, so 0 is assumed. Here, we also make a note of the current
state for later reference - self.state = state.state

• self.state is an object attribute

• state.state is the actual state of the entity. Like other Home Assistant state descriptions it can also have a
set of sub-attributes under state.attributes for values like brightness or color etc.

OnStateUpdate at least for this widget is very similar to OnStateAvailable, in fact it could probably be a
single function for both initial and update but I separated it out for clarity.

// The OnStateUpdate function will be called when the specific entity
// receives a state update - its new values will be available
// in self.state[<entity>] and returned in the state parameter

function OnStateUpdate(self, state)
{

self.state = state.state;
if ("brightness" in state.attributes)
{

self.level = state.attributes.brightness
}
else
{

self.level = 0
}

set_view(self, self.state, self.level)
}

Next, we define the functions that we referenced in the callback list for the various click actions. First,
OnButtonClick is responding to someone touching the widget to toggle the state from off to on or vice-versa.

210 Chapter 13. HADashboard Widget Development

AppDaemon Documentation, Release 4.0.7

function OnButtonClick(self)
{

if (self.state == "off")
{

args = self.parameters.post_service_active
if ("on_attributes" in self.parameters)
{

for (var attr in self.parameters.on_attributes)
{

args[attr] = self.parameters.on_attributes[attr]
}

}
}
else
{

args = self.parameters.post_service_inactive
}
self.call_service(self, args)
toggle(self)

}

This is less complicated than it looks. What is happening here is that based on the current state of the entity, we are
selecting which service to call to change that state. We are looking it up in our parameters that we saved earlier.

So, if the light is off we consult our parameters for post_service_active which should be set to a service that
will turn the light on (e.g. light/turn_on). Similarly, if it is on, we look for post_service_inactive to
find out how to turn it off. Once we have made that choice we make the service call to effect the change: self.
call_service()

The additional logic and loop when state is off is to construct the necessary dictionary of additional parameters in the
format the turn_on service expects to set brightness, color, etc, that may be passed into the widget.

Usually, HADashboard understands args values as a single string. If you need to use a service that expects to receive
a list or a dictionary then you may use the special key json_args and set its value to a stringified json. For example,
suppose you want to pass to the service a list called colors, then you could change the above code and include
another check:

if ("my_json" in self.parameters)
{

args["json_args"] = JSON.stringify(self.parameters.my_json);
}

The corresponding widget configuration may include something like this:

my_json:
colors:

- red
- blue
- green

Raise level is fairly explanatory - this is clicked to make the light brighter:

function OnRaiseLevelClick(self)
{

self.level = self.level + 255/10;
self.level = parseInt(self.level)
if (self.level > 255)
{

(continues on next page)

13.4. Base Widgets 211

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

self.level = 255
}
args = self.parameters.post_service_active
args["brightness"] = self.level
self.call_service(self, args)

}

Here we are using post_service_active and setting the brightness attribute. Each click will jump 10 units.
Lower level is very similar:

function OnLowerLevelClick(self)
{

self.level = self.level - 255/10;
if (self.level < 0)
{

self.level = 0;
}
self.level = parseInt(self.level)
if (self.level == 0)
{

args = self.parameters.post_service_inactive
}
else
{

args = self.parameters.post_service_active
args["brightness"] = self.level

}
self.call_service(self, args)

}

It is slightly more complex in that rather than setting the level to 0, when it gets there it turns the light off.

Finally, the toggle function is called by both of the above functions to change the stored state of the entity and update
the display (using set_view() again)

function toggle(self)
{

if (self.state == "on")
{

self.state = "off";
self.level = 0

}
else
{

self.state = "on";
}
set_view(self, self.state, self.level)

}

Set_view() is where we attend to updating the widgets actual display based on the current state that may have just
changed.

// Set view is a helper function to set all aspects of the widget to its
// current state - it is called by widget code when an update occurs
// or some other event that requires an update of the view

function set_view(self, state, level)
(continues on next page)

212 Chapter 13. HADashboard Widget Development

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

{

if (state == "on")
{

// Set Icon will set the style correctly for an icon
self.set_icon(self, "icon", self.icons.icon_on)
// Set view will set the view for the appropriate field
self.set_field(self, "icon_style", self.css.icon_style_active)

}
else
{

self.set_icon(self, "icon", self.icons.icon_off)
self.set_field(self, "icon_style", self.css.icon_style_inactive)

}
if (typeof level == 'undefined')
{

self.set_field(self, "level", 0)
}
else
{

self.set_field(self, "level", Math.ceil((level*100/255) / 10) * 10)
}

}
}

The most important concept here are the 2 calls to update fields:

• set_icon() - update an icon to a different one, usually used to switch from an on representation to an off repre-
sentation and vice-versa

• set_field() - update a field to show a new value. In this case the brightness field is being update to show the latest
value

That is the anatomy of a typical widget - here it is in full:

function baselight(widget_id, url, skin, parameters)
{

// Will be using "self" throughout for the various flavors of "this"
// so for consistency ...

self = this

// Initialization

self.widget_id = widget_id

// Parameters may come in useful later on

self.parameters = parameters

// Parameter handling

if ("monitored_entity" in self.parameters)
{

entity = self.parameters.monitored_entity
}
else

(continues on next page)

13.4. Base Widgets 213

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

{
entity = self.parameters.entity

}

if ("on_brightness" in self.parameters)
{

self.on_brightness = self.parameters.on_brightness
}
else
{

self.on_brightness = 127
}

// Define callbacks for on click events
// They are defined as functions below and can be any name as long as the
// 'self'variables match the callbacks array below
// We need to add them into the object for later reference

self.OnButtonClick = OnButtonClick
self.OnRaiseLevelClick = OnRaiseLevelClick
self.OnLowerLevelClick = OnLowerLevelClick

var callbacks =
[

{"selector": '#' + widget_id + ' > span', "callback": self.OnButtonClick},
{"selector": '#' + widget_id + ' #level-up', "callback": self.

→˓OnRaiseLevelClick},
{"selector": '#' + widget_id + ' #level-down', "callback": self.

→˓OnLowerLevelClick},
]

// Define callbacks for entities - this model allows a widget to monitor multiple
→˓entities if needed

// Initial will be called when the dashboard loads and state has been gathered
→˓for the entity

// Update will be called every time an update occurs for that entity

self.OnStateAvailable = OnStateAvailable
self.OnStateUpdate = OnStateUpdate

var monitored_entities =
[

{"entity": entity, "initial": self.OnStateAvailable, "update": self.
→˓OnStateUpdate}

]

// Finally, call the parent constructor to get things moving

WidgetBase.call(self, widget_id, url, skin, parameters, monitored_entities,
→˓callbacks)

// Function Definitions

// The StateAvailable function will be called when
// self.state[<entity>] has valid information for the requested entity
// state is the initial state

(continues on next page)

214 Chapter 13. HADashboard Widget Development

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

function OnStateAvailable(self, state)
{

self.state = state.state;
if ("brightness" in state.attributes)
{

self.level = state.attributes.brightness
}
else
{

self.level = 0
}
set_view(self, self.state, self.level)

}

// The OnStateUpdate function will be called when the specific entity
// receives a state update - its new values will be available
// in self.state[<entity>] and returned in the state parameter

function OnStateUpdate(self, state)
{

self.state = state.state;
if ("brightness" in state.attributes)
{

self.level = state.attributes.brightness
}
else
{

self.level = 0
}

set_view(self, self.state, self.level)
}

function OnButtonClick(self)
{

if (self.state == "off")
{

args = self.parameters.post_service_active
if ("on_attributes" in self.parameters)
{

for (var attr in self.parameters.on_attributes)
{

args[attr] = self.parameters.on_attributes[attr]
}

}
}
else
{

args = self.parameters.post_service_inactive
}
console.log(args)
self.call_service(self, args)
toggle(self)

}

function OnRaiseLevelClick(self)
{

(continues on next page)

13.4. Base Widgets 215

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

self.level = self.level + 255/10;
self.level = parseInt(self.level)
if (self.level > 255)
{

self.level = 255
}
args = self.parameters.post_service_active
args["brightness"] = self.level
self.call_service(self, args)

}

function OnLowerLevelClick(self)
{

self.level = self.level - 255/10;
if (self.level < 0)
{

self.level = 0;
}
self.level = parseInt(self.level)
if (self.level == 0)
{

args = self.parameters.post_service_inactive
}
else
{

args = self.parameters.post_service_active
args["brightness"] = self.level

}
self.call_service(self, args)

}

function toggle(self)
{

if (self.state == "on")
{

self.state = "off";
self.level = 0

}
else
{

self.state = "on";
}
set_view(self, self.state, self.level)

}

// Set view is a helper function to set all aspects of the widget to its
// current state - it is called by widget code when an update occurs
// or some other event that requires an update of the view

function set_view(self, state, level)
{

if (state == "on")
{

// Set Icon will set the style correctly for an icon
self.set_icon(self, "icon", self.icons.icon_on)
// Set view will set the view for the appropriate field

(continues on next page)

216 Chapter 13. HADashboard Widget Development

AppDaemon Documentation, Release 4.0.7

(continued from previous page)

self.set_field(self, "icon_style", self.css.icon_style_active)
}
else
{

self.set_icon(self, "icon", self.icons.icon_off)
self.set_field(self, "icon_style", self.css.icon_style_inactive)

}
if (typeof level == 'undefined')
{

self.set_field(self, "level", 0)
}
else
{

self.set_field(self, "level", Math.ceil((level*100/255) / 10) * 10)
}

}
}

13.5 A Note on Skinning

As you have seen, when creating a new widget, it is also necessary to add entries for the skinning variables. When con-
tributing widgets back, please ensure that you have provided entries for all of the included skins that are sympathetic
to the original look and feel, or the PR will not be accepted.

13.5. A Note on Skinning 217

AppDaemon Documentation, Release 4.0.7

218 Chapter 13. HADashboard Widget Development

CHAPTER 14

Development

If you want to help with the development of AppDaemon all assistance is gratefully received! Here are a few things
you can do to help.

14.1 Running a Dev Version

For the adventurous among you, it is possible to run the very latest dev code to get a preview of changes before they
are released as part of a stable build. Be aware you use the dev branch at your own risk. Although we try to keep
things consistent and functional, we can’t guarantee that things won’t break. However, feedback from brave souls
running the dev branch is always gratefully received!

Also, note, that to run a dev version you should be using the PIP install method. Docker builds are created for dev too,
but there is no hass.io support.

There are 2 different ways of installing via PIP. If we are running a beta, we will have a number of specific milestone
builds. These will not install by default using the standard pip command line but can be installed if their exact version
is given to the pip command:

$ pip3 install appdaemon==<specific beta version>

For non-beta builds, when the goal is just to run the latest dev code, or if you want a local version of the dev code
without installing it over the top of the stable code, take the following steps:

14.1.1 Clone the Repository

First, we need to get a clean copy of the dev branch. To do this, create a new directory, and change into it. Run the
following command to clone the dev branch of the AppDaemon repository:

$ git clone -b dev https://github.com/AppDaemon/appdaemon.git

This will create a directory called appdaemon - this is your repository directory, and all commands will need to be
run from inside it.

219

AppDaemon Documentation, Release 4.0.7

14.1.2 Run AppDaemon from the command line

Now that you have a local copy of the code, the next step is to run AppDaemon using that code.

As a first step, if you are using a Virtual Environment (VE) enable it. The best practice here is to use a VE specifically
for the dev version. In some cases, it is possible that the dev branch may have updated dependencies that will be
incompatible with the latest stable release, and may break it. In this process, you can find dependency issues, review
setup.py for a list of required dependencies.

To run the cloned version of AppDaemon, make sure you are in the appdaemon subdirectory and run the following
command:

$ python3 -m appdaemon -c <PATH To CONFIG DIRECTORY>

In most cases, it is possible to share config directories with other AppDaemon instances. However, you must be aware
of apps that use new features as they will likely cause errors for the stable version. If you prefer, you can create an
entirely new conf directory for your dev environment.

14.1.3 Install AppDamon via PIP (Optional)

Although the recommended way of running a dev build is to use the command line above, it is possible to install an
AppDaemon dev build as a pip package. If you do so, it will replace your stable version, so only do this if you are
confident with packages and VEs. However, if you use a specific VE for the dev build, this should not be an issue.
Also, remember that if you do this, you will need to reinstall the package as an extra step every time you refresh the
dev repository (see below).

To install the dev build as a package, change to the appdaemon directory and run the following command:

$ pip3 install .

14.1.4 Updating AppDaemon to the latest dev version

When the dev version has been updated, and you want to pull over the latest changes, run the following command
from the appdaemon directory:

$ git pull

You can then immediately run the latest version with the command line above. If you are using pip, remember to rerun
the install command using the --upgrade flag:

$ pip3 install --upgrade .

14.2 Pull Requests

If you see a way to improve on AppDaemon, We are pleased to receive Pull Requests. The official AppDaemon
repository is here:

https://github.com/AppDaemon/appdaemon

Please note, if documentation is required to make sense of the PR, the PR will not be accepted without it.

220 Chapter 14. Development

https://github.com/AppDaemon/appdaemon

AppDaemon Documentation, Release 4.0.7

14.3 Documentation

Assistance with the docs is always welcome, whether its fixing typos and incorrect information or reorganizing and
adding to the docs to make them more helpful. To work on the docs, submit a pull request with the changes, and I
will review and merge them in the usual way. I use readthedocs to build and host the docs, and you can easily set up a
preview of your edits as follows:

First, install sphinx and support libraries.

$ pip3 install sphinx sphinx-rtd-theme sphinx-autobuild

Then cd to the docs subdirectory, where all the rst files are found, and run the following command:

$ sphinx-autobuild --host=0.0.0.0 . _build_html

Sphinx will take a minute or so to build the current version of the docs, and it will then be available on port 8000 (e.g.,
http://localhost:8080) of the machine hosting sphinx. As you make changes. Sphinx will automatically detect them
and update the browser page in real-time. When you finish your editing, stop sphinx by typing ctrl-c.

14.3. Documentation 221

http://localhost:8080

AppDaemon Documentation, Release 4.0.7

222 Chapter 14. Development

CHAPTER 15

Internal Documentation

These notes are intended to assist anyone that wants to understand AppDaemon’s internals better. Most modules are
used from within the AppDaemon object, which is a centralized depository of configuration information and references
to the other objects and subsystems within AppDaemon.

15.1 appdaemon object

15.2 admin

15.3 admin_loop

15.4 app_management

15.5 callbacks

15.6 dashboard

15.7 events

Module to handle all events within AppDaemon.

class Events(ad: appdaemon.appdaemon.AppDaemon)
Encapsulate event handling.

add_event_callback(name, namespace, cb, event, **kwargs)
Adds a callback for an event which is called internally by apps.

Parameters

223

AppDaemon Documentation, Release 4.0.7

• name (str) – Name of the app.

• namespace (str) – Namespace of the event.

• cb – Callback function.

• event (str) – Name of the event.

• **kwargs – List of values to filter on, and additional arguments to pass to the callback.

Returns None or the reference to the callback handle.

cancel_event_callback(name, handle)
Cancels an event callback.

Parameters

• name (str) – Name of the app or module.

• handle – Previously supplied callback handle for the callback.

Returns None.

fire_event(namespace, event, **kwargs)
Fires an event.

If the namespace does not have a plugin associated with it, the event will be fired locally. If a plugin
is associated, the firing of the event will be delegated to the plugin, under the understanding that when
the event is fired, the plugin will notify appdaemon that it occurred, usually via the system the plugin is
communicating with.

Parameters

• namespace (str) – Namespace for the event to be fired in.

• event (str) – Name of the event.

• **kwargs – Arguments to associate with the event.

Returns None.

info_event_callback(name, handle)
Gets the information of an event callback.

Parameters

• name (str) – Name of the app or subsystem.

• handle – Previously supplied handle for the callback.

Returns A dictionary of callback entries or rise a ValueError if an invalid handle is provided.

process_event(namespace, data)
Processes an event that has been received either locally or from a plugin.

Parameters

• namespace (str) – Namespace the event was fired in.

• data – Data associated with the event.

Returns None.

process_event_callbacks(namespace, data)
Processes a pure event callback.

Locate any callbacks that may be registered for this event, check for filters and if appropriate, dispatch the
event for further checking and eventual action.

224 Chapter 15. Internal Documentation

AppDaemon Documentation, Release 4.0.7

Parameters

• namespace (str) – Namespace of the event.

• data – Data associated with the event.

Returns None.

has_log_callback(name)
Returns True if the app has a log callback, False otherwise.

Used to prevent callback loops. In the calling logic, if this function returns True the resulting logging
event will be suppressed.

Parameters name (str) – Name of the app.

15.8 logging

class DuplicateFilter(logger, threshold, delay, timeout)

filter(record)
Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for yes. If deemed appropriate, the record
may be modified in-place.

class AppNameFormatter(fmt=None, datefmt=None, style=None)
Logger formatter to add ‘appname’ as an interpolatable field.

format(record)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The mes-
sage attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is called to format the event time. If there is
exception information, it is formatted using formatException() and appended to the message.

class LogSubscriptionHandler(ad: appdaemon.appdaemon.AppDaemon, type)
Handle apps that subscribe to logs.

This Handler requires that it’s formatter is an instance of AppNameFormatter.

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

15.9 main

class PluginBase(ad: appdaemon.appdaemon.AppDaemon, name, args)
Base class for plugins to set up _logging

15.8. logging 225

AppDaemon Documentation, Release 4.0.7

15.10 scheduler

15.11 state

15.12 stream

15.13 thread_async

class ThreadAsync(ad: appdaemon.appdaemon.AppDaemon)
Module to translate from the thread world to the async world via queues

15.14 threading

15.15 utility_loop

Module to handle utility functions within AppDaemon.

class Utility(ad: appdaemon.appdaemon.AppDaemon)
Class that includes the utility loop.

Checks for file changes, overdue threads, thread starvation, and schedules regular state refreshes.

stop()
Called by the AppDaemon object to terminate the loop cleanly

Returns None

loop()
The main utility loop.

Loops until stop() is called, checks for file changes, overdue threads, thread starvation, and schedules
regular state refreshes.

15.16 utils

class PersistentDict(filename, safe, *args, **kwargs)
Dict-like object that uses a Shelf to persist its contents.

update([E], **F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

class AttrDict(*args, **kwargs)
Dictionary subclass whose entries can be accessed by attributes (as well as normally).

static from_nested_dict(data)
Construct nested AttrDicts from nested dictionaries.

class StateAttrs(dict)

write_to_file(yaml_file, **kwargs)
Used to write the app to Yaml file

226 Chapter 15. Internal Documentation

CHAPTER 16

Upgrading from 3.x

This documentation is for AppDaemon is 4.0.0 or later. If you are upgrading from a 3.x version, there have been
some changes to the way AppDaemon is configured, and you will need to edit your config files and make some other
changes. The changes are listed below:

Note that not all changes will apply to everyone, some of them are in fairly obscure parts of AppDaemon that few if
any people use, however, everyone will have to make some changes, so read carefully.

• log section is deprecated in favor of a new and more versatile logs section. In AppDaemon 4.x, each log can
be configured individually for filename, maximum size, etc. and in addition, it now supports custom formats
and additional user logs.

For more detail see the Log Configuration section in the Configuration section.

• api_port is no longer supported by the appdaemon section, it has moved to the new http component,
and is defined by the port number in the url parameter. API Paths to apps have not changed. The App API,
Dashboards and new Admin interface all share a single port, configured in the http section. For further details,
see Configuring the HTTP Component in the Configuration section. To turn on support for the App
Api, you will need to include an api section in AppDaemon.yaml - see the Configuring the API section
in the Configuration section/

• latitude, longitude, elevation and timezone are now mandatory and are specified in the
appdaemon section of appdaemon.yaml.

227

AppDaemon Documentation, Release 4.0.7

228 Chapter 16. Upgrading from 3.x

CHAPTER 17

Upgrading from 2.x

This documentation is for AppDaemon is 3.0.0 or later. If you are upgrading from a 2.x version, there have been
some changes to the way AppDaemon is configured, and you will need to edit your config files and make some other
changes. The changes are listed below:

Note that not all changes will apply to everyone, some of them are in fairly obscure parts of AppDaemon that few if
any people use, however, everyone will have to make some changes, so read carefully.

• AppDaemon no longer supports python 3.4

This is a fairly significant step, and the decision to do this was influenced by HASS’ pending end of support for Python
3.4. There are many technical reasons why this is a good thing, but the bottom line is that you will need to upgrade
your python version to run HASS anyway, so I took this opportunity to follow suit. AppDaemon 3.0 will remain in
beta until HASS drops python 3.4 support entirely.

• Apps need to change the import and super class

The naming and placement of the imports needed to change to support the plugin architecture, and to make more sense
of the naming in a multiple plugin environment. You will need to edit each of your apps and change the top couple of
lines from:

import appdaemon.appapi as appapi

class MyClass(appapi.AppDaemon):
...

to:

import hassapi as hass

class MyClass(hass.Hass):
...

Note, we are changing both the import name, and the superclass.

• info_listen_state() now returns the namespace in addition to the previous parameters

229

AppDaemon Documentation, Release 4.0.7

I introduced namespaces as a way of handling multiple plugins at the same time - the docs have more details, but if
you are just using a single HASS instance, as everyone has been doing until now, you can safely ignore namespaces.

• The “ha_started” event has been renamed to “plugin_started”

If you use this event, the name has been changed. The plugin started event has a parameter called name which gives
the name of the plugin that was restarted.

• RSS Feed parameters have been moved to the hadashboard section

When HADashboard is integrated with HASS, the config for HADashboard needs to be all in one place.

e.g.:

hadashboard:
dash_url: http://192.168.1.20:5050
rss_feeds:
- feed: http://rss.cnn.com/rss/cnn_topstories.rss

target: news
rss_update: 300

• Log directives now have their own section

Logging is a function of the underlying execution code, not specifically AppDaemon (for instance, when integrated
with HASS, AppDaemon will use HASS logging. For that Reason, the log directives were pulled out into their own
section. The section is optional, and if not specified all the previous defaults will apply.

For example:

log:
accessfile: /export/hass/appdaemon_test/logs/access.log
errorfile: /export/hass/appdaemon_test/logs/error.log
logfile: /export/hass/appdaemon_test/logs/appdaemon.log
log_generations: 5
log_size: 1024

appdaemon:
...

• AppDaemon section renamed to appdaemon, HADashboard section renamed to hadashboard

This was done mainly for consistency, and because the capitals bugged me ;)

• Plugins (such as the HASS plugin now have their own parameters under the plugin section of the config file

This comes down to a reorganization of the appdaemon.yaml file to reflect the fact that there are now plugins and
there may be more than one of them. Rather than having its own section, the HASS plugin is now listed under the
appdaemon section, although the arguments remain the same. Here is an example:

appdaemon:
api_port: 5001
api_key: !secret appdaemon_key
threads: 10
time_zone: GMT+0BST-1,M3.5.0
plugins:
HASS:

type: hass
ha_key: !secret home_assistant_key
ha_url: http://192.168.1.20:8123
#commtype: SSE

• –commtype command line argument has been moved to the appdaemon.cfg file

230 Chapter 17. Upgrading from 2.x

AppDaemon Documentation, Release 4.0.7

This parameter applies specifically to HASS, so it made no sense to have it as a commandline argument. See above
for an example.

• Accessing other Apps arguments is now via the app_config attribute, config retains just the AppDaemon
configuration parameters

Required due to the restructuring of the config files.

• the self.ha_config attribute has been replaced by the self.get_hass_config() api call and now supports
namespaces.

This reflects the fact that the yaml files have been reconfigured, and that the config info is now owned by the individual
plugins.

• The !secret directive has been moved to the top level of appdaemon.yaml

The same argument as the logs - not strictly relevant to AppDaemon, more a concern of the execution environment.

• apps.yaml in the config directory has now been deprecated

One of the new features in 3.0 is that it is now possible to split the apps.yaml into multiple files. You are free to do this
in any way you want and place the yaml files with any name, anywhere in the directory hierarchy under the appdir.
Apart from flexibility, another reason for this was to prepare the way for later features around configuration tools and
automatic app installs. For now, the only necessary step is to move your apps.yaml file from the config directory into
the apps directory. If you do not, you will get a warning but everything should still work for now. If you do stick with
apps.yaml at in the config directory for now, any other yaml files in the apps directory will be ignored.

• select_value() has been renamed to set_value() to harmonize with HASS

A minor change just to reflect the recent changes to HASS in this area, e.g input_slider being renamed to
input_number and the service name changing.

• It is no longer possible to automatically migrate from the legacy cfg style of config, and support for cfg files has
been dropped.

This has been on the cards for a while - if you are still using cfg files, use the latest 2.0 version of appdaemon to
migrate to yaml style configuration before you upgrade to 3.0.

• App modules not listed in an apps.yaml file will no longer be loaded. Python modules may still be imported
directly if they are in a directory in which other apps reside.

• cert_path is deprecated. With the replacement of requests with aiohttp, it is now sufficient to set
cert_verify to False to use a self signed certificate.

• In apps.yaml, dependencies should now be a proper yaml list rather than a comma separated string

This rewrite introduces some breaking changes as dependencies are now tracked at the app level rather than the module
level. This gives a lot more flexibility, and solves a couple of problems. For instance, @ReneTode, the undisputed
AppDaemon power user has one App that he is running 60 different instances of. Under the old system, a change
to one of those instances parameters in apps.yaml forced all 60 apps to reload - not good :) With the new app level
dependencies, just the affected app will reload, along with any other apps that depend on it.

While I was in the code I made another change that I had been wanting to for a while - dependencies used to be a
comma separated list, now they are a true yaml list.

So what does that mean for anyone upgrading? Well, if you weren’t using dependencies before, then absolutely
nothing, all should work the same.

If you were using dependencies, you will need to make some minor changes, to reference apps rather than modules,
and to change the format for multiple entries. Here’s an example of an old style dependency tree:

231

AppDaemon Documentation, Release 4.0.7

app1:
module: module1
class: class1

app2:
module: module2
class: class2

app3:
module: module3
class: class3
dependencies: module1

app4:
module: module4
class: class4
dependencies: module1,module2

Under the new system we change the dependencies to apps and change the way the dependencies are listed:

app1:
module: module1
class: class1

app2:
module: module2
class: class2

app3:
module: module3
class: class3
dependencies: app1

app4:
module: module4
class: class4
dependencies:
- app1
- app2

As you can see, single dependencies can be listed inline, but if you have more than one you must us the YAML list
format.

For those of you that are relying on the module based reloading to force reloads of modules that aren’t apps, this can
be achieved using global module dependencies.

232 Chapter 17. Upgrading from 2.x

CHAPTER 18

Change Log

18.1 4.0.7 (2021-03-28)

Features

• Added new api timer_running, to be used to confirm if a previously scheduled timer is still running

Fixes

• Fixed get_history api for HASS plugin

• Fixed issue with Dashboard not loading on old Tablets - contributed by Rene Tode

• Fixed issue with deviceid on old Tablets - contributed by Rene Tode

Breaking Changes

18.2 4.0.6 (2021-03-21)

Features

• Added the ability to have access to metadata from HASS events - contributed by engrbm87

• Added the ability to allow widget to make use of mouse events, which can then be sent to AD backend

• Added the ability to add custom javascript code to dashboard - contributed by Rene Tode

• Added the ability to set deviceId on dashboard, via the dashboard URL - contributed by clyra

• Added the ability to navigate to different dashboards on different devices based on the set deviceId - contributed
by clyra

• Added Icon widget service calls and state update delay - contributed by Jakub Macoun

• Improved the how the Alarm Panel Cancel button looks - contributed by Chris Johns

• Cancelling either an event, state, log or timer now returns a boolean value to indicate if executed or not

233

https://github.com/ReneTode
https://github.com/ReneTode
https://github.com/engrbm87
https://github.com/ReneTode
https://github.com/clyra
https://github.com/clyra
https://github.com/JakubMacoun
https://github.com/ChrisJohns-me

AppDaemon Documentation, Release 4.0.7

• Added ability to have custom system packages installed in docker when it starts, by specifying the packagegs in
a system_packages.txt file. - contributed by Sanjit Dutta

• Added ability for apps to create namespaces, and remove the created namespace. This namespaces are persistent
by default

• Added ability to persist plugin entities. This can be useful for example if wanting to persist entities within
MQTT namespace

• Moved the appdaemon reladed services to the admin namespace. So no more appdaemon namespace

• Added services for creating, editting, removing, enabling, disabling apps

• Added ability to receive binary payload from MQTT broker

• Added cchardet and aiodns to improve aiohttp speed

• Added the ability to submit tasks to executor threads

• Added the ability to make use of uvloop to improve speed, compared to the default asyncio loop

• Added the module_path and app config yaml_path to the app’s entity_id

• Pinned requests to 2.25.1

Fixes

• Updated material design icons to v5.4.55 - contributed by Thomas Delaet

• Fixed get_now api, whereby it returned UTC time instead of local time

• FIxed issue whereby when a non properly terminated app has an error, AD starts the app automatically

• Fixed issue whereby it is possible to use the app api to “start” an already running app

• Fixed issue whereby when app api is used, AD could hook itself since it gets into a loop depending on how the
app is written

• Fixed get_history_api for HASS - contributed by Ross Rosen

• Fixed issue with listen_state when immediate or duration is used with it

• Fixed issue whereby when an invalid handler is used to cancel event/state/log/timer, it gives no warning its
invalid

• Fixed an issue with stream api using get_state api call

• Fixed Azure packages by droping deprecated packages - contributed by freezeboy

• Prevent the ability for apps to register services in non-existent namespaces

• Fixed issue with newly registered HASS services

• Fix Cryptography Rust compile issue

• Required example files are now being created by startup script - contributed by Alexandros Dorodoulis

• Fixed issues with Bumping astral - contributed by Werner Pieterson

• Bumped websocket-client from 0.57.0 to 0.58.0

• Bumped pid from 2.2.5 to 3.0.4

• Bumped pygments from 2.6.1 to 2.8.1

• Bumped iso8601 from 0.1.12 to 0.1.14

• Bumped pytz from 2019.3 to 2021.1

• Bumped bcrypt from 3.1.7 to 3.2.0

234 Chapter 18. Change Log

https://github.com/sdlynx
https://pypi.org/project/cchardet
https://pypi.org/project/aiodns
https://github.com/thomasdelaet
https://github.com/rr326
https://github.com/freezeboy
https://github.com/alexdor
https://github.com/wernerhp

AppDaemon Documentation, Release 4.0.7

• Bumped feedparser from 5.2.1 to 6.0.2

• Bumped yarl from 1.4.2 to 1.6.3

• Bumped voluptuous from 0.11.7 to 0.12.1

• Bumped pyyaml from 5.3 to 5.4.1

• Bumped aiohttp-jinja2 from 1.2.0 to 1.4.2

• Bumped jinja2 from 2.11.1 to 2.11.3

• Bumped astral from 1.10.1 to 2.2

• Bumped paho-mqtt from 1.5.0 to 1.5.1

• Bumped aiohttp from 3.7.3 to 3.7.4

• Bumped python-socketio from 4.4.2 to 4.6.1

• Bumped deepdiff from 4.3.1 to 5.2.3

• Bumped azure-mgmt-storage from 16.0.0 to 17.0.0

• Bumped azure-storage-blob from 12.7.1 to 12.8.0

• Bumped azure-mgmt-resource from 15.0.0 to 16.0.0

• Bumped azure-mgmt-compute from 5.0.0 to 19.0.0

• Fixed issue with socketIO, where the client is incompatible with server

• Fix for multiarch docker builds, so Appdaemon is built for different platforms - contributed by Aleksey Sviridkin
and Ben

• Fix for UVLOOP Windows compatibility - contributed by Steffen Fredriksen

• Fix for Hass Api async api - contributed by Oxan van Leeuwen

• Prevented the loading of hidden files into AD; those starting with a .

• Prevented the loading of hidden python files into AD; those starting with a .

• Prevented the loading of hidden folders into AD; those starting with a .

• Fixed issue where when an app is stopped using api, when started it doesn’t respect the previous pin given to it
by AD

• Documentation fixes - contributed by Rock coaxial

• Documentation fixes - contributed by Bob Gray

• Documentation fixes - contributed by Ross Rosen

• Documentation fixes - contributed by Dougal Matthews

• Documentation fixes - contributed by Jason Lachowsky

• Documentation fixes - contributed by Jonas Pedersen

• Documentation fixes - contributed by chbndrhnns

• Documentation fixes - contributed by Addison Lynch

• Allowed for both multi and single level MQTT wildcard subscription

• Ensured AD doesn’t break, when a “.” is used in app name, while it is ignored. Contributed by Xavi Moreno

• Fix for MQTT Listen Event using Async - contributed by Ross Rosen

• Fix for using async method as constraints, contributed by Mithras

18.2. 4.0.6 (2021-03-21) 235

https://github.com/lexfrei
https://github.com/benleb
https://github.com/Hellowlol
https://github.com/oxan
https://github.com/coaxial
https://github.com/bg1000
https://github.com/rr326
https://github.com/d0ugal
https://github.com/dajo
https://github.com/JonasPed
https://github.com/chbndrhnns
https://github.com/addisonlynch
https://github.com/xaviml
https://github.com/rr326
https://github.com/Mithras

AppDaemon Documentation, Release 4.0.7

Breaking Changes

• Those using non-existent namespaces to register app services, will need to create a UDN and use that to register
the service as described here

• If using user defined namespace, there is need to delete the present ones in the namespaces directory.

• Due to the removal of the appdaemon namespace, if anyone was manaully making a service call using it, will
need to be updated

• binary is now a reserved keyword argument used when listening to MQTT events

• When using wildcard to listen for events within an app, only those used to subscribe to the broker can
be used. so if using camera/# to subscribe to all camera related topics, AD will not recognise camera/
front-door/# as a valid wildcard when listening for events; unless camera/front-door/# was used
for subscription itself.

• Moved the local static folder for serving static files from web to www. If using web already, simply add it to
static_dirs in the http component as described here

18.3 4.0.5 (2020-08-16)

Features

None

Fixes

• Fixed a duo of bugs that left entities lying around in the AUI and AD’s internals tat eventually led to slowdown
and crash

Breaking Changes

None

18.4 4.0.4 (2020-07-11)

Features

• All module dependencies pinned to exact versions for better environmental predictability

• Bump pyyaml to 5.3

• Bump yarl to 1.4.2

• Bump bcrypt to 3.1.7

• Bump jinja2 to 2.10.3

• Bump aiohttp-jinja2 to 1.2.0

• Bump deepdiff from 4.0.9 to 4.2.0

• Bump jinja2 from 2.11.0 to 2.11.1

• Bump deepdiff from 4.2.0 to 4.3.1

• Bump pygments from 2.5.2 to 2.6.1

• Add Azure pipelines for Black and Flake - contributed by Bas Nijholt

• Added service call for remove_entity

236 Chapter 18. Change Log

https://appdaemon.readthedocs.io/en/latest/APPGUIDE.html#user-defined-namespaces
https://appdaemon.readthedocs.io/en/latest/CONFIGURE.html#configuring-the-http-component
https://github.com/basnijholt

AppDaemon Documentation, Release 4.0.7

• Added ability to use now in run_every. Also seconds can be added by simply using now+10 for example

• Presence convenience functions now support a person flag to use person entities rather than device trackers
for presence detection

• constrain_person constraints added to support person entities

• Add stream support for SockJS

• Dashboard component now only sends event updates for relevant dashboard entities rather than broadcasting all
state_change events

• Admin UI now breaks out App instance and lifetime callback stats separately

• Convert admin and dashboard to get_state from stream

• Increase default work factor for password hashes to 12

• Added add_entity api call, alongeside state/add_entity service call

• Added the ability to remove plugin entities like HA when using the remove_entity api

• Cleanup sequences when modified. This ensures removed sequences are also removed from the Admin UI and
AD

• Added support to use environment variables using the !env_var tag, if not wanting to use the !secrets tag

• Additional format for time travel start and end times accepted

• Added the ability to specify a callback to hass get_history. This way, large amount of data can be retrieved from
the database, without AD cancelling the task

• Added retry_secs parameter to the hass plugin

Fixes

• Re-added support for SSL in the http module (should also fix dialogflow)

• Add openssl-dev package to docker image (required for RPI)

• Fixed up socketio support to work with the new stream semantics

• Fixed a bug that allowed multiple copies of an App to run if there was an error in the signature of terminate()

• AppDaemon’s REST API no longer needs to be active to use the dashboard or Admin interfaces

• Fix tzdata error in docker build for RPI - contributed by Guy Khmelnitsky

• Fix for get_tz_offset() not working in some circumstances - contributed by sillyfrog

• Added some locking to prevent array size change errors

• Fix for registering services created in HA, after it had started

• Added additional logic to wait for full HASS startup

Breaking Changes

• Changed websocket_connected and websocket_disconnected events to stream_connected
and stream_disconnected respectively

• Changed the get_history api, as entity_id has been removed from the api

18.4. 4.0.4 (2020-07-11) 237

https://github.com/GuyKh
https://github.com/sillyfrog

AppDaemon Documentation, Release 4.0.7

18.5 4.0.3 (2020-02-29)

Features

• Pinned astral to v1.10.1

Fixes

• Pinned astral to prevent a bug in the latest v2 astral

Breaking Changes

None

18.6 4.0.2 (2020-02-28)

Features

None

Fixes

• Fixed a critical bug that cause multiple scheduler errors during a leap year - contributed by Chad McCune

Breaking Changes

None

18.7 4.0.1

Features

None

Fixes

• Fixed an issue, where when http is disabled in appdaemon.yaml, AD is unable to start

• Fixed an issue that prevented dashboards from working on older iPads

Breaking Changes

None

18.8 4.0.0 (2020-01-12)

Features

• Added events for when an app is initialized or terminated

• Added event_fire service call

• Added production_mode service call

• Added list_services api call

• Added the ability to fire an event callback only once, using the oneshot flag

• Added the ability to use async functions as endpoint callback

238 Chapter 18. Change Log

https://github.com/chadmccune

AppDaemon Documentation, Release 4.0.7

• Added the ability for input_select to auto-update when the options changes, without need of refreshing
the browser page

• Added events for when a websocket client connects and disconnects

• Added the ability for apps to register web routes, thereby utilizing AD’s internal web server

• Added static folder web, which can used to serve content like images using AD’s internal web server

• Added ability for users to define static folders, which can used to serve content like images using AD’s internal
web server

• Added support for python 3.8

Fixes

• Fixed issue where the user could potentially create entities in admin, global or appdaemon namespaces

Breaking Changes

None

18.9 4.0.0 Beta 2 (2019-10-19)

Features

• Added a timeout parameter to listen_state() and listen_event() to delete the callback after a
pre-determined interval.

• Added render_template() handling

• global_modules can now be declared in multiple yaml files

• It is now possible to inject arbitrary headers in served http content

• Updated camera widget now supports streams and token refreshing

• Added input_text and input_datetime widgets

• Added the ability to control the number of threadpool workers

• Each time a new service is registered, a service_registered event is fired, which can be picked up by
apps

• Added support for async apps

• Added authorization to stream as well as command semantics for various functions

• Added sequences

• Added sequence widget

• Added app access to dashboard directory using self.dashboard_dir

• List of available dashes is now alphabetically sorted

• Changed namespaces implementation to use shelve instead of JSON enabling non JSON-serializable objects to
be stored and also potential performance increases - contributed by Robert Schindler

• MDI updated to version 4.4.95 - contributed by Roeland Van Lembergen

Fixes

• Fixed a bug in global_modules that caused a exception

• Fixed icon bug in weather widget - contributed by Roeland Van Lembergen

18.9. 4.0.0 Beta 2 (2019-10-19) 239

https://github.com/efficiosoft
https://github.com/clayhill
https://github.com/clayhill

AppDaemon Documentation, Release 4.0.7

Breaking Changes

• timeout is now an official parameter to listen_state() and listen_event(). If you were using
timeout in your kwargs section for either you should rename that parameter.

• The camera widget has changed parameters - check the docs for details

• Moved the log events from global to admin namespace. if listen_log is just used for listening to logs,
it shouldn’t matter

• If you have used persistent namespaces in the previous beta it is necessary to delete all saved namespaces by
removing all files in the namespaces subdirectory under your appdaemon config directory

18.10 4.0.0 Beta1 (2019-08-30)

Features

• Apps can now use a simplified version of the import statement e.g. import hassapi as hass or import
mqttapi as mqtt. The existing import method will continue to work.

• Apps can now use multiple plugin APIs with the get_plugin_api() function

• Added ADBase superclass for apps that want to use the get_plugin_api() style of coding

• Scheduler rewritten to be more efficiant and allow for microsecond resolution

• listen_log() now sends AppDaemon system messages and has the option to set a log level.

• Bumped aiohttp to v3.4.4

• Added callback locking decorators

• Rearchitected the work Q to allow App pinning and avoid re-entrant and concurrent code if desired

• Implemented multiple worker Ques to avoid Head of Line blocking

• API Calls to control app pinning

• Added the run_in_thread() api call - with assistance from Odianosen Ejale

• reworked log listening functions to be more robust and added the ability to have multiple callbacks per app

• Refactored plugin APIs to remove duplication

• Moved constrain_days from being Hass only to all app, regardless of plugin used

• Added checking for overdue threads

• Added error checking for callback signatures

• Added app attributes that allows to access AD’s config and apps directories within apps

• Added parse_datetime()

• run_once(), run_at() and run_daily() now optionally take parse_time() or
parse_datetime() style arguments for specifying time

• Refactored appdaemon.py for greater readability and easier maintenance

• Expanded on the ability to trigger listen_state callbacks immediately using the immediate flag, without
need of specifying the new nor duration parameter.

• Allowed to make use of attribute when using the immediate flag in listen_state

• Added initial version of the Admin Interface

240 Chapter 18. Change Log

https://github.com/Odianosen25

AppDaemon Documentation, Release 4.0.7

• Added User Defined Namespaces

• Rewrote logging to include user defined logs and formats

• Added a unified http component to handle API, ADMIN and DASHBOARD access on a single port

• Added startup conditions to the HASS plugin

• Added duplicate filtering for logs

• Added standalone pidfile functionality

• Added the ability to delete an AD app generated entity from any namespace

• Added the ability to get the history of entities from HASS database

• Added the ability to force a start of the MQTT plugin, even if not connected to broker at startup

• Added the ability to set AD’s production_mode from within apps

• Added the ability to start, stop, restart and reload apps from either other apps or REST API

• Added the ability to register app services

• Added sensors for different internal state of AD, that can be read by apps

• Added Person widget

• Much reworking of docs

• Added register_dependency() for dynamic dependencies in apps

• Added MQTT support for setting TLS version - contributed by Miguel

• Added support for socketio for older tablet devices - inspired by algirdasc and zarya

• Added support for default and copy parameters in get_state() api call - contributed by Robert
Schindler

• added a switch to disable the encoding of every log message to ascii - contributed by Ben Lebherz

• Various YAML fixes and refactoring - contributed by Rolf Schäuble

• Allow more natural addition of commandline arguments to Docker and allow spaces - contributed by Christoph
Roeder

• Allowed for subscribing to MQTT events using wildcards. e.g. homeassistant/# - contributed by Odi-
anosen Ejale

• Allow to specify a MQTT message to be sent when AD shutdowns cleanly e.g. offline

• MQTT Retain setting for birth and will messages - contributed by Clifford W. Hansen

• Added Note on long lived tokens for Docker users - contributed by Bob Anderson

• Documentation fixes - contributed by Johann Schmitz

• Documentation fixes - contributed by Brendon Baumgartner

• Documentation fixes - contributed by Quentin Favrie

• Documentation fixes, updating and cleaning - contributed by Humberto Rodríguez A.

• Added the ability to set title 2 as friendly name in widgets - contributed by Radim

• Added the ability to listen to state_change events, without using listen_state() - contributed by Thomas
Delaet

• APIAI updated to dialog flow - contributed by engrbm87

18.10. 4.0.0 Beta1 (2019-08-30) 241

https://github.com/mdps
https://github.com/algirdasc
https://github.com/zarya
https://github.com/efficiosoft
https://github.com/efficiosoft
https://github.com/benleb
https://github.com/rschaeuble
https://github.com/brightdroid
https://github.com/brightdroid
https://github.com/Odianosen25
https://github.com/Odianosen25
https://github.com/cliffordwhansen
https://github.com/rwa
https://github.com/ercpe
https://github.com/bbrendon
https://github.com/tseho
https://github.com/rhumbertgz
https://github.com/rds76
https://github.com/thomasdelaet
https://github.com/thomasdelaet
https://github.com/engrbm87

AppDaemon Documentation, Release 4.0.7

Fixes

• Fixes to listen_state() oneshot function

• Fixes to listen_state() oneshot function when duration is used

• Fixes to listen_state() function when it fires even when new and old states are same

• Fixed an issue causing incorrect busy thread counts when app callbacks had exceptions

• Fixed an issue of when MQTT Plugin not connected to broker, and it holds up AD startup

• Fix to Forecast min/max in weather widget - contributed by adipose

• Fix climate widget docs - contributed by Rene Tode

• Fix to harmonize units vs unit - contributed by Rene Tode

• Added missing import in sound.py example - contributed by cclaus

• Fix for run_once() - contributed by engrbm87

• Fix for onclick not working on IE11 - contributed by jgrieger1

• Fixed issue of AppDaemon loading all .yaml files, even those starting with a . which are hidden or binary
files. Contributed by fhirschmann

• Fix for error generated when a none existent schedule timer is passed to info_timer

• Fix for log_type flag in listen_log callback

• Relative paths for appdaemon’s config directory now work correctly

• Fix to Dialogflow after format changes

• MQTT fix to subscribing using wildcards - contributed by Daniel Lashua

Breaking Changes

• appapi.py has been renamed to adbase.py, and the contained superclass ha been renamed from AppDaemon to
ADBase. This should only be a breaking change if you were using unpublished interfaces!

• Time travel semantics have changed to support faster scheduling.

• plugin_started and plugin_stopped now go to the appropriate namespace for the plugin and are no
longer global

• Apps are no longer concurrent or re-entrant by default. This is most likely a good thing.

• Changed the signature of listen_log() callbacks

• cancel_listen_log() now requires a handle supplied by the initial listen_log()

• Removed Daemonize support - please use sysctl instead

• set_app_state() is deprecated - use set_state() instead and it should do the right thing

• dash_compile_on_start now defaults to true

• The log section of appdaemon.yaml has been deprecated and must be replaced by the new logs section which
has a different format to allow for user defined logs and greater flexibility in formatting etc.

• API no longer has a separate port, all access is configured via the new unified http component

• API has its own top level configuration section

• Some dashboard parameters moved to the HTTP section and renamed

• dash_compile_on_start renamed to compile_on_start

242 Chapter 18. Change Log

https://github.com/adipose
https://github.com/ReneTode
https://github.com/ReneTode
https://github.com/cclauss
https://github.com/engrbm87
https://github.com/jgrieger1
https://github.com/fhirschmann
https://github.com/dlashua

AppDaemon Documentation, Release 4.0.7

• dash_force_compile renamed to force_compile

• Due to the new log parameter to allow apps to use user defined logs, any previous parameters named log
should be renamed

• Due to a fix for info_timer, this function can now return None if the timer handle is invalid

• As a result of a change in the way AD auto generates MQTT client status topic, if not defined previously the
new topic needs to be used

• In the appdaemon configuration section, latitude, longitude, elevation and timezone are now
mandatory

• MQTT client status api change from clientConnected to is_client_connected

18.11 3.0.4 (2019-04-04)

Fixes

• Use yaml.Safeloader to work around known security issue with PyYaml - contributed by mvn23

• Unpinned PyYaml

18.12 3.0.3 (2019-04-02)

Fixes

• Pinned PyYaml to 3.13 to avoid a known issue

18.13 3.0.2 (2018-10-31)

Features

• added set_textvalue() api call.

• added app_init_delay to delay App Initialization

• Added ability to register apps to receive log entries

• Added instructions for running a dev build

• Added support for Long Lived Access Tokens

• Updated MDI Icons to 3.0.39

• Updated Font Awesome Icons to 5.4.2

• Added MQTT Plugin - contributed by Tod Schmidt

• Many MQTT Plugin enhancements - contributed by Odianosen Ejale

• Added entitypicture widget - contributed by hwmland

• Docker start script will now check recursively for additional requirements and install them - contributed by
Kevin Eifinger

• Added ability to set units explicitly in widgets - contributed by Rene Tode

• Added –upgrade to pip3 call for recursive requirements.txt scanning - contributed by Robert Schindler

18.11. 3.0.4 (2019-04-04) 243

https://github.com/mvn23
https://github.com/tschmidty69
https://github.com/Odianosen25
https://github.com/hwmland
https://github.com/eifinger
https://github.com/ReneTode
https://github.com/efficiosoft

AppDaemon Documentation, Release 4.0.7

• Added the ability to pass stringified JSON parameters to service calls - contributed by Clyra

Fixes

• Fixed incorrect service call in set_value()

• Enforce domain name in rss feed target to avoid issues with other functions

• Previously deleted modules will now be correctly reloaded to reflect changes

• Fixed a bug in get_scheduler_entries()

• Prevent periodic refresh of HASS state from overwriting App created entities - contributed by Odianosen Ejale

• Fix to honor cert_path - contributed by Myles Eftos

• Run AD in docker as PID 1 - contributed by Rolf Schäuble

• Fix encoding error in log messages - contributed by Markus Meissner

• Fix a bug in get_plugin_meta() - contributed by Odianosen Ejale

• Various Doc corrections and additions - contributed by Odianosen Ejale

• Various fixes in the Docker docs - contributed by Simon van der Veldt

• Namespace fixes - contributed by Odianosen Ejale

• More namespace fixes - contributed by Odianosen Ejale

• Fixes of the namespaces fixes ;) - contributed by Brian Redbeard

• Fix typo in sample systemd config - contributed by Evgeni Kunev

• Fix to cert path config - contributed by nevalain

Breaking Changes

• RSS target names must now consist of a domain as well as the target name, e.g. rss.cnn_news

• SSE Support has been removed

• Use of ha_key for authentication is deprecated and will be removed at some point. For now it will still work

• Many Font Awesome Icon names have changed - any custom icons you have on dashboards will need to be
changed to suit - see docs for more detail.

While working through the upgrade it is strongly advised that you clear your browser cache and force the recompilation
of all of your dashboards to flush out references to old icons. This can be done by manually removing the compiled
subdirectory in conf_dir, specifying recompile=1 in the arguments to the dashboard, or setting the hadashboard
option dash_compile_on_start to 1.

18.14 3.0.1 (2018-04-18)

Features

• Added Production Mode to disable checking of App config or code changes

• RSS Feed can now optionally show a description for each story

• Disabling of zooming and double tap zooming on iOs devices is now optional via the scaling dashboard
argument

• Exiting from the commandline with ctrl-c will now cleanly terminate apps

244 Chapter 18. Change Log

https://github.com/clyra
https://github.com/Odianosen25
https://github.com/madpilot
https://github.com/rschaeuble
https://github.com/daringer
https://github.com/Odianosen25
https://github.com/Odianosen25
https://github.com/simonvanderveldt
https://github.com/Odianosen25
https://github.com/Odianosen25
https://github.com/brianredbeard
https://github.com/kunev
https://github.com/nevalain
https://appdaemon.readthedocs.io/en/latest/DASHBOARD_CREATION.html#a-note-on-font-awesome-upgrade

AppDaemon Documentation, Release 4.0.7

• Sending SIGTERM to an appdaemon process will cause a clean shutdown, including orderly termination of all
apps in dependency order

• Added extra checking for HASS Initialization to prevent a race condition in which metadata could not be read

• Weather widget adds the ability to change sensors, more dynamic units, forecast option, icon options, option
to show Rain/Snow depending on precip_type sensor (and change icons), wind icon rotates according to wind
bearing - contributed by Marcin Domański

Fixes

• Fixed a problem in the Docker initialization script

• Fixed an parameter collision for events with a parameter name in listen_event()

• Grammar corrections to docs, and a fix to the stop code - contributed by Matthias Urlichs

Breaking Changes

• iOS Scaling and tap zooming is no longer disabled by default

18.15 3.0.0 (2018-03-18)

Features

• API 200 responses are now logged to the access file

• Add meta tags to prevent double tap zoom on iOS

Fixes

• Re-added set_app_state() to the API

Breaking Changes

None

18.16 3.0.0b5 (2018-03-05)

Features

• Added additional error checking for badly formed RSS feeds

Fixes

• Fixed a bug that broke binary_sensor widget.

• Fixed a bug that broke retries when connecting to Home Assistant

• Fixed a bug that could cause lockups during app initialization

• Fixed a bug for Docker that prevented the initial config from working correctly - contributed by mradziwo

• Grammar corrections to docs, and a fix to the stop code - contributed by Matthias Urlichs

Breaking Changes

None

18.15. 3.0.0 (2018-03-18) 245

https://github.com/kabturek
https://github.com/smurfix
https://github.com/mradziwo
https://github.com/smurfix

AppDaemon Documentation, Release 4.0.7

18.17 3.0.0b4 (2018-03-03)

Features

• Single App dependencies can now be specified on the dependency line itself and don’t have to be a list of size 1

• Added get_ad_version(), and ad_version to the config dictionary

• Added filters for Apps

• Added global module dependency tracking

• Added plugin reload app control

• Added icon widget

Fixes

• Apps now correctly reload when HASS comes back up after a restart

• get_error() now properly returns the error log logger object

• get_hass_config() is now correctly named

• app_args now correctly returns args for all apps

• get_state() now returns fields from the attributes dictionary in preference to the top level dictionary if there
is a clash. In particular, this now means it is easier to iterate through group members

• Fixed a bug preventing an objects terminate() from being called when deleted from apps.yaml

• Fixed a bug in which object info was not being cleaned out at object termination

• Fixed an issue preventing dashboard updates on python 3.6

Breaking Changes

None

18.18 3.0.0b3 (2018-02-11)

Features

• Added javascript widget

• Upgraded MDI Icons to 2.1.19

• Add separate log for diagnostic info

• Per-widget type global parameters

• App level dependencies

• listen_state() now returns the handle to the callback

• added oneshot option to listen_state()

• Add step parameter to climate widget - contributed by Adrian Popa

• Add internationalization options to clock widget - contributed by Adrian Popa

• Doc improvements - contributed by Marco

Fixes

• Fixed image path for android devices

246 Chapter 18. Change Log

https://github.com/mad-ady
https://github.com/mad-ady
https://github.com/marconett

AppDaemon Documentation, Release 4.0.7

• Fix a bug with the time parameter for images

• Fixed disable_apps

• Fixed a bug in get_state() with attributes=all returning just the attributes dictionary instead of the
entire entity.

Breaking Changes

• In apps.yaml, dependencies should now be a proper yaml list rather than a comma separated string

• Dependencies now refer to individual apps rather than modules

18.19 3.0.0b2 (2018-01-27)

Features

• Make int args in appdaemon.yaml a little more robust

• Improve handling for missing app files

• Module loading enhancements

• Moved from requests to aiohttp client for better async behavior

• Added thread monitoring for worker threads

• Give more informative error message if AppDaemon can’t locate a valid config dir

Fixes

• Fixed a bug that could cause multiple apps.yaml changes or additions to be ignored

• Fixed a bug causing listen_state() callbacks with duration set to fire immediately

• Pinned yarl library to fix an issue with Docker build

• Fixed a couple of potential event loop hold ups

• Fixed a bug in password security for HADashboard service and state calls

• Changes to apps.yaml now also force a reload of dependent modules

• exclude_dirs now applies to yaml files as well as python files

• Fixed broken icon on HADashboard logon screen

• Fixed a bug preventing the media title from showing in the media player

Breaking Changes

• App modules not listed in an apps.yaml file will no longer be loaded. Python modules may still be imported
directly if they are in a directory in which other apps reside.

• cert_path is deprecated. With the replacement of requests with aiohttp, it is now sufficient to set
cert_verify to False to use a self signed certificate.

• Initial dashboard loads may be slower on less powerful hardware when using password authentication. Updating
after the initial load is unaffected.

18.19. 3.0.0b2 (2018-01-27) 247

AppDaemon Documentation, Release 4.0.7

18.20 3.0.0b1 (2018-01-12)

Features

• Refactored pluggable architecture

• Support for multiple HASS instances

• Custom constraints

• Namespaces

• Path of Secret file can now be specified

• apps.yaml can now be split across multiple files and directories

• Apps can now establish loading priorities to influence their loading order

• IFRAME Refreshes should now be more reliable

• Added calls to access the underlying logger objects for the main and error logs

• Add the ability to ignore specific subdirectories under appdir

• Added error handling for apps that can’t be read or have broken links

• Added london Underground Widget - contributed by mmmmmmtasty

• Added ability to display sensor attributes - contributed by mmmmmmtasty

• Added Weather Summary Widget - contributed by mmmmmmtasty

• Added Sticky navigation - contributed by Lars Englund

• Added Input Select widget - contributed by Rene Tode

• Redesigned Input Number widget (old is still available as input_slider) - contributed by Rene Tode

• Added Radial widget - contributed by Rene Tode

• Added Temperature widget - contributed by Rene Tode

• Added container style to sensor widget - contributed by Rene Tode

Fixes

• Fixed an issue with the compiled directory not being created early enough

Breaking Changes

• Apps need to change the import and super class

• info_listen_state() now returns the namespace in addition to the previous parameters

• AppDaemon no longer supports python 3.4

• –commtype command line argument has been moved to the appdaemon.cfg file

• The “ha_started” event has been renamed to “plugin_started”

• RSS Feed parameters have been moved to the hadashboard section

• Log directives now have their own section

• AppDaemon section renamed to appdaemon, HADashboard section renamed to hadashboard

• Accessing other Apps arguments is now via the app_config attribute, config retains just the AppDaemon
configuration parameters

• Plugins (such as the HASS plugin now have their own parameters under the plugin section of the config file

248 Chapter 18. Change Log

https://github.com/mmmmmtasty
https://github.com/mmmmmtasty
https://github.com/mmmmmtasty
https://github.com/larsenglund
https://github.com/ReneTode
https://github.com/ReneTode
https://github.com/ReneTode
https://github.com/ReneTode
https://github.com/ReneTode

AppDaemon Documentation, Release 4.0.7

• The !secret directive has been moved to the top level of appdaemon.yaml

• the self.ha_config attribute has been replaced by the self.get_hass_config() api call and now supports
namespaces.

• apps.yaml in the config directory has now been deprecated

• select_value() has been renamed to set_value() to harmonize with HASS

• It is no longer possible to automatically migrate from the legacy cfg style of config, and support for cfg files has
been dropped.

18.21 2.1.12 (2017-11-07)

Features

None

Fixes

• Fixed passwords causing 500 error on HADashboard - contributed by wchan.ranelagh

Breaking Changes

None

18.22 2.1.11 (2017-10-25)

Features

None

Fixes

• Fixed an issue with run_at_sunset() firing multiple times

Breaking Changes

None

18.23 2.1.10 (2017-10-11)

Features

• Renamed the HADashboard input_slider to input_number to support HASS’ change

• Fixed select_value() to work with input_number entities

Fixes

None

Breaking Changes

The input_select widget has been renamed to input_number to support the change in HASS

18.21. 2.1.12 (2017-11-07) 249

https://community.home-assistant.io/u/wchan.ranelagh/summary

AppDaemon Documentation, Release 4.0.7

18.24 2.1.9 (2017-09-08)

Features

None

Fixes

• broken disable_apps temporary workaround

Breaking Changes

None

18.25 2.1.8 (2017-09-08)

Features

• Refactor of dashboard code in preparation for HASS integration

• Addition of check to highlight excessive time in scheduler loop

• Split app configuration out into a separate file in preparation for HASS integration

• Enhance widget API to handle all event types instead of just click

• Add example HADashboard focused Apps for Oslo City Bikes, Caching of local AppDaemon events, Moni-
toring events and logging, Google Calendar Feed, Oslo Public Transport, YR Weather - contributed by Torkild
Retvedt

Fixes

• Fixed a bug that gave a spurious “text widget not found” error

Breaking Changes

• App configuration is now separate from AppDaemon, HASS and HADashboard configuration

• The Widget API has changed to accommodate different event types and now needs an action parameter to
specify what the event type to be listened for is

18.26 2.1.7 (2017-08-20)

Features

• Converted docs to rst for better readthedocs support

• Added custom widget development

• Enhanced API support to handle multiple endpoints per App

• Added helper functions for Google Home’s APP.AI - contributed by engrbm87

• Added immediate parameter to listen state to trigger immediate evaluation of the delay parameter

Fixes

None

Breaking Changes

• Existing API Apps need to register their endpoint with register_endpoint()

250 Chapter 18. Change Log

https://github.com/torkildr
https://github.com/torkildr
https://github.com/engrbm87

AppDaemon Documentation, Release 4.0.7

18.27 2.1.6 (2017-08-11)

Features

• API now runs on a separate port to the dashboard

Fixes

None

Breaking Changes

• API requires the api_port configuration value to be set and now runs on a different port from the dashboard

• SSL Setup for API now requires api_ssl_certificate and api_ssl_key to be set

• ad_key has been renamed to api_key

18.28 2.1.5 (2017-08-10)

Features

None

Fixes

None

Breaking Changes

• get_alexa_slot_value() now requires a keyword argument for slotname

18.29 2.1.4 (2017-08-10)

Features

None

Fixes

• .cfg file fixes

Breaking Changes

None

18.30 2.1.3 (2017-08-10)

Features

• Restructure docs for readthedocs.io

None

Fixes

None

Breaking Changes

18.27. 2.1.6 (2017-08-11) 251

AppDaemon Documentation, Release 4.0.7

None

18.31 2.1.2 (2017-08-08)

Features

• Add ‘get_alexa_slot_value()

• Add log_size and log_generations config parameters

• Add additional debugging to help Docker users

Fixes

None

Breaking Changes

None

18.32 2.1.0 (2017-08-08)

Features

• Add a reference to official vkorn repository for hass.io

• Add the ability to access hass state as App attributes

• Add RESTFul API Support for Apps

• Add disable_dash directive to enable API access without Dashboards

• Add Alexa Helper functions

• Update Material Design Icons to 1.9.32 - contributed by minchick

• Use relative URLs for better remote behavior - contributed by Daniel Trnka

• Add SSL Support

• Add Password security for screens and HASS proxying functions

• Add support for secrets in the AppDaemon configuration file

• Add support for secrets in HADashboard configuration files

• dash_navigate() now takes an optional screen to return to

Fixes

• Toggle area fixes submitted by azeroth12 and minchick

• Typo fixes submitted by Aaron Linville, vrs01, Gabor SZOLLOSI, Ken Davidson, Christian Lasaczyk, Klaus,
Johan Haals

• Fixed missing skin variables for media player and sensor widgets

Breaking Changes

• Compiled dashboards may need to be deleted after this upgrade

252 Chapter 18. Change Log

https://github.com/minchik
https://github.com/trnila
https://github.com/azeroth12
https://github.com/minchik
https://github.com/linville
https://github.com/vrs01
https://github.com/szogi
https://github.com/kwdavidson
https://github.com/ChrisLasar
https://github.com/k-laus
https://github.com/jhaals

AppDaemon Documentation, Release 4.0.7

18.33 2.0.8 (2017-07-23)

Features

• Add step parameter to media player

• Add row parameter to dashboard

• Add ability to set timeout and return on dash navigation

• Add ability to force dashboard page changes from Apps, Alexa and HASS Automations

Fixes

• Add quotes to times in examples.yaml - contributed by Cecron

• Fix python 3.6 issue with datetime.datetime.fromtimestamp() - contributed by motir

Breaking Changes

None

18.34 2.0.7 (2017-07-20)

Features

None

Fixes

• Fixed a bug in label and text_sensor widgets

Breaking Changes

None

18.35 2.0.6 (2017-07-20)

Features

None

Fixes

• Fix a bug causing an apps terminate() to not be called

Breaking Changes

None

18.36 2.0.5 (2017-07-16)

Features

None

Fixes

• Change convert_utc() to use iso8601 library

18.33. 2.0.8 (2017-07-23) 253

https://github.com/Cecron
https://github.com/motir

AppDaemon Documentation, Release 4.0.7

Breaking Changes

None

18.37 2.0.4 (2017-07-16)

Features

• AppDaemon is now on PyPi - no more need to use git for installs

• Allow time_zone directive in appdaemon.cfg to override hass supplied time zone

• Add API calls to return info on schedule table and callbacks (get_scheduler_entries(), get_callback_entries())

• Add get_tracker_details()

• Add sub entity to sensor

• Add hass_disconnected event and allow Apps to run while HASS is disconnected

Fixes

• Fix startup examples to match new -c semantics and add in docs

• Fix Time Travel

• Fix for crashes on HASS restart if apps weren’t in use - contributed by shprota

• Attempted a fix for NaN showing for Nest & Ecobee thermostats when in auto mode

Breaking Changes

None

18.38 2.0.3 (2017-07-09)

Features

• Add error display field to weather widget

Fixes

• Fix issue with device trackers and use_hass_icon

Breaking Changes

None

18.39 2.0.2 (2017-07-08)

Features

• Move docker image to python 3.6

Fixes

None

Breaking Changes

None

254 Chapter 18. Change Log

https://github.com/shprota

AppDaemon Documentation, Release 4.0.7

18.40 2.0.1 (2017-07-08)

Features

• Much Improved Docker support including tutorial - many thanks to quadportnick

Fixes

• Version Change

• Respect cert_path setting when connecting to WebSocket over SSL - contributed by yawor

Breaking Changes

None

18.41 2.0.0beta4 (2017-06-18)

Features

• Migrate timer thread to async

• Add option to turn off verification for self signed certs (contributed by janwh)

• AppDaemon configuration now uses YAML, among other things this allows arbitrarily complex nested data
structures in App parameters

• Added ability to convert from old cfg file to YAML

• AppDaemon Apps can now publish arbitrary state to other Apps and the dashboard

• Added Gauge Widget

• Added RSS Widget

• Add next and previous track to media player

Fixes

• Slider now works correctly after changes outside of HADashboard

• Climate now works correctly after changes outside of HADashboard

• Media player now works correctly after changes outside of HADashboard

• ha.log now correctly dumps data structures

• on_attributes for lights now correctly supports RGB and XY_COLOR

• Fixed a bug in the scheduler to reduce clock skew messages

Breaking Changes

• The cfg file style of configuration is now deprecated although it still works for now for most features

• Argument names passed to Apps are now case sensitive

18.42 2.0.0beta3.5 (2017-04-09)

Features

• Label now accepts HTML for the value

18.40. 2.0.1 (2017-07-08) 255

https://community.home-assistant.io/u/quadportnick/summary
https://github.com/yawor
https://github.com/janwh

AppDaemon Documentation, Release 4.0.7

• IFRAME widget now allows vimeo and youtube videos to go fullscreen when clicked

• IFRAME and Camera widgets now have optional title overlay

• Widgets that display icons can now pick up icons defined in HASS

• aiohttp version 2 support

Fixes

•

Breaking Changes

•

18.43 2.0.0beta3 (2017-03-27)

Features

• Added alarm widget

• Added camera widget

• Dimmers and groups now allow you to specify a list of on parameters to control brightness, color etc.

• Edited code for PEP8 Compliance

• Widgets can now have a default size other than (1x1)

• Added empty to layouts for multiple blank lines

• Numeric values can now have a comma as the decimal separator

• Add Global Parameters

• Rewrote media widget

Fixes

• IFrames now follow widget borders better

• IFrame now allows user input

• Fixed a race condition on dashboard reload

Breaking Changes

• Media Widget now needs to be 2 cells high

18.44 2.0.0beta2 (2017-03-12)

Features

• Widget level styles now correctly override just the styles they are replacing in the skin, not the whole style

• Device tracker toggling of state is optional and defaults to off

• Add climate widget

• Add script widget

• Add lock widget

• Add cover widget

256 Chapter 18. Change Log

AppDaemon Documentation, Release 4.0.7

• Added optional monitored_state argument to group to pick a representative entity to track dimming in-
stead of guessing

• Introduce new widget definition model in preparation for custom widgets

• Rewrite several widgets using the new model

• Add state map and state text functions to sensor, scene, binary_sensor, switch, device_tracker, script, lock, cover,
input_boolean

• Allow dashboard accesses to be logged in a separate file

• Flag to force recompilation after startup

• Additional error checks in many places

• Dashboard determines the stream URL dynamically rather than by having it hard coded

• Add IFRAME widget

• Sensor widget now automatically detects units

• Sensor widget has separate styles for text and numeric

• Style fixes

• Active Map for device trackers

Fixes

• Various minor skin fixes

Breaking Changes

• Widget level styles that relied on overriding the whole skin style may no longer work as expected

• Device trackers must now be explicitly configured to allow the user to toggle state, by setting the enable
parameter

• Groups of lights must have the monitored_entity argument to work properly if they contain any dimmable
lights

• text_sensor is deprecated and will be removed at some stage. It is now an alias for sensor

18.45 2.0.0beta1 (2017-03-04)

Features

• Initial release of HADashboard v2

Fixes

None

Breaking Changes

• appdaemon’s -c option now identifies a directory not a file. The previously identified file must exist in that
directory and be named appdaemon.cfg

18.46 1.5.2 (2017-02-04)

Features

18.45. 2.0.0beta1 (2017-03-04) 257

AppDaemon Documentation, Release 4.0.7

• Code formatted to PEP8, various code optimizations - contributed by yawor

• Version check for WebSockets now understands dev versions - contributed by yawor

• turn_off() will now call turn_on() for scenes since turning a scene off makes no sense, to allow extra
flexibility

• Restored the ability to use line, module and function in log messages. Recoded to prevent errors in non-
compatible Python versions if the templates are not used.

Fixes

None

Breaking Changes

None

18.47 1.5.1 (2017-01-30)

Features

None

Fixes

• Functionality to substitute line numbers and module names in log statements temporarily removed

Breaking Changes

• Functionality to substitute line numbers and module names in log statements temporarily removed

18.48 1.5.0 (2017-01-21)

Features

• Swap from EventStream to Websockets (Requires Home Assistant 0.34 or later). For earlier versions of HA,
AppDaemon will fallback to EventStream.

• Restored less verbose messages on HA restart, but verbose messages can be enabled by setting -D DEBUG
when starting AppDaemon

• From the command line ctrl-c now results in a clean shutdown.

• Home Assistant config e.g. Latitude, Longitude are now available in Apps in the self.ha_config dictio-
nary.

• Logging can now take placeholder strings for line number, function and module which will be appropriately
expanded in the actual message

• Add example apps: battery, grandfather, sensor_notification, sound

• Updates to various example apps

Fixes

• get_app() will now return None if the app is not found rather than throwing an exception.

Breaking Changes

• get_app() will now return None if the app is not found rather than throwing an exception.

None

258 Chapter 18. Change Log

https://github.com/yawor
https://github.com/yawor

AppDaemon Documentation, Release 4.0.7

18.49 1.4.2 (2017-01-21)

Features

None

Fixes

• Remove timeout parameter from SSEClient call unless timeout is explicitly specified in the config file

Breaking Changes

None

18.50 1.4.1 (2017-01-21)

Features

• turn_off() now allows passing of parameters to the underlying service call

• Better handling of scheduler and worker thread errors. More diagnostics, plus scheduler errors now delete the
entry where possible to avoid spamming log entries

• More verbose error handling with HA communication errors

Fixes

None

Breaking Changes

None

18.51 1.4.0 (2017-01-20)

Features

• notify() now supports names

• It is now possible to set a timeout value for underlying calls to the HA EventStream

• It is no longer necessary to specify latitude, longitude and timezone in the config file, the info is pulled from HA

• When being reloaded, Apps are now able to clean up if desired by creating an optional terminate() function.

• Added support for module dependencies

Fixes

Breaking Changes

• To include a title when using the notify() call, you must now use the keyword title instead of the optional
positional parameter

18.52 1.3.7 (2017-01-17)

Features

• Add entity_exists() call

18.49. 1.4.2 (2017-01-21) 259

AppDaemon Documentation, Release 4.0.7

• List Apps holding up initialization

Fixes

• Add documentation for the days constraint

• Various other contributed documentation fixes

Breaking Changes

None

18.53 1.3.6 (2016-10-01)

Features

• Add device trackers to switch_reset example

Fixes

• Fixed a bug in which AppDaemon exited on startup if HA was not listening causing AppDaemon failure to start
on reboots

• Fixed some scheduler behavior for appd and ha restart events

• Fix presence example to only notify when state changes (e.g. not just for position updates)

• Change door notify example to explicitly say “open” or “closed” instead of passing through state

• Fix a bug in device_trackers example

Breaking Changes

None

18.54 1.3.4 (2016-09-20)

Features

• Add Minimote Example

• Add device trackers to switch_reset example

Fixes

• Fixed a minor scheduler bug that didn’t honor the delay for callbacks fired from appd and ha restart events

Breaking Changes

None

18.55 1.3.4 (2016-09-18)

Features

• Add Momentary Switch example

• Add Switch Reset Example

Fixes

260 Chapter 18. Change Log

AppDaemon Documentation, Release 4.0.7

• Fix a race condition in App Initialization

• Fix a bug that overwrote state attributes

• Fix to smart heat example app

• Fix day constraints while using time travel

Breaking Changes

None

18.56 1.3.3 (2016-09-16)

Features

• Add ability to specify a cert directory for self-signed certs

• Add ability for listen_event() to listen to any event

• Add filter options to listen_event()

Fixes

• Fix several potential race conditions in the scheduler

Breaking Changes

None

18.57 1.3.2 (2016-09-08)

Features

• Document “Time Travel” functionality

• Add convenience function to set input_select called select_option() - contributed by jbardi

• Add global access to configuration and global configuration variables - suggested by ReneTode

Fixes

• Tidy up examples for listen state - suggested by ReneTode

• Warning when setting state for a non-existent entity is now only given the first time

• Allow operation with no ha_key specified

• AppDaemon will now use the supplied timezone for all operations rather than just for calculating sunrise and
sunset

• Reduce the chance of a spurious Clock Skew error at startup

Breaking Changes

None

18.56. 1.3.3 (2016-09-16) 261

https://community.home-assistant.io/users/jbardi/activity
https://community.home-assistant.io/users/renetode/activity
https://community.home-assistant.io/users/renetode/activity

AppDaemon Documentation, Release 4.0.7

18.58 1.3.1 (2016-09-04)

Features

• Add convenience function to set input_selector called select_value() - contributed by Dave Banks

Fixes

None

Breaking Changes

None

18.59 1.3.0 (2016-09-04)

Features

• Add ability to randomize times in scheduler

• Add duration to listen_state() to fire event when a state condition has been met for a period of time

• Rewrite scheduler to allow time travel (for testing purposes only, no effect on regular usage!)

• Allow input_boolean constraints to have reversed logic

• Add info_listen_state(), info_listen_event() and info_schedule() calls

Fixes

• Thorough proofreading correcting typos and formatting of API.md - contributed by Robin Lauren

• Fixed a bug that was causing scheduled events to fire a second late

• Fixed a bug in get_app() that caused it to return a dict instead of an object

• Fixed an error when missing state right after HA restart

Breaking Changes

• run_at_sunrise() and run_at_sunset() no longer take a fixed offset parameter, it is now a keyword,
e.g. offset = 60

18.60 1.2.2 (2016-08-31)

Features

None

Fixes

• Fixed a bug preventing get_state() calls for device types

• Fixed a bug that would cause an error in the last minute of an hour or last hour of a day in run_minutely() and
run)hourly() respectively

Breaking Changes

None

262 Chapter 18. Change Log

https://github.com/djbanks
https://github.com/llauren

AppDaemon Documentation, Release 4.0.7

18.61 1.2.1 (2016-08-26)

Features

• Add support for windows

Fixes

None

Breaking Changes

None

18.62 1.2.0 (2016-08-24)

Features

• Add support for recursive directories - suggested by jbardi

Fixes

None

Breaking Changes

None

18.63 1.1.1 (2016-08-23)

Fixes

• Fix init scripts

18.64 1.1.0 (2016-08-21)

Features

• Installation via pip3 - contributed by Martin Hjelmare

• Docker support (non Raspbian only) - contributed by Jesse Newland

• Allow use of STDERR and SDTOUT as logfile paths to redirect to stdout and stderr respectively - contributed
by Jason Hite

• Deprecated “timezone” directive on cfg file in favor of “time_zone” for consistency with Home Assistant config

• Added default paths for config file and apps directory

• Log and error files default to STDOUT and STDERR respectively if not specified

• Added systemd service file - contributed by Jason Hite

Fixes

• Fix to give more information if initial connect to HA fails (but still avoid spamming logs too badly if it restarts)

• Rename ‘init’ directory to ‘scripts’

18.61. 1.2.1 (2016-08-26) 263

https://github.com/jbardi
https://github.com/MartinHjelmare
https://github.com/jnewland
https://github.com/jasonmhite
https://github.com/jasonmhite

AppDaemon Documentation, Release 4.0.7

• Tidy up docs

Breaking Changes

• As a result of the repackaging for PIP3 installation, all apps must be edited to change the import statement of
the api to import appdaemon.appapi as appapi

• Config must now be explicitly specified with the -c option if you don’t want it to pick a default file location

• Logfile will no longer implicitly redirect to STDOUT if running without the -d flag, instead specify STDOUT
in the config file or remove the logfile directive entirely

• timezone is deprecated in favor of time_zone but still works for now

18.65 1.0.0 (2016-08-09)

Initial Release

264 Chapter 18. Change Log

CHAPTER 19

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

19.1 A

• alarm [Widget]

• anyone_home() [Hass API]

19.2 B

• binary_sensor [Widget]

19.3 C

• call_service() [AppDaemon API]

• camera [Widget]

• cancel_listen_event() [AppDaemon API]

• cancel_listen_log() [AppDaemon API]

• cancel_listen_state() [AppDaemon API]

• cancel_timer() [AppDaemon API]

• climate [Widget]

• clock [Widget]

• convert_utc() [AppDaemon API]

265

DASHBOARD_CREATION.html#alarm
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.anyone_home
DASHBOARD_CREATION.html#binary-sensor
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.call_service
DASHBOARD_CREATION.html#camera
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.cancel_listen_event
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.cancel_listen_log
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.cancel_listen_state
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.cancel_timer
DASHBOARD_CREATION.html#climate
DASHBOARD_CREATION.html#clock
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.convert_utc

AppDaemon Documentation, Release 4.0.7

• cover [Widget]

19.4 D

• dash_navigate() [AppDaemon API]

• date() [AppDaemon API]

• datetime() [AppDaemon API]

• days [Constraints]

• device_tracker [Widget]

19.5 E

• entity_exists() [AppDaemon API]

• entitypicture [Widget]

• error() [AppDaemon API]

• everyone_home() [Hass API]

19.6 F

• fire_event() [AppDaemon API]

• format_alexa_response() [AppDaemon API]

• format_dialogflow_response() [AppDaemon API]

• friendly_name() [AppDaemon API]

19.7 G

• gauge [Widget]

• get_ad_version() [AppDaemon API]

• get_alexa_error() [AppDaemon API]

• get_alexa_intent() [AppDaemon API]

• get_alexa_slot_value() [AppDaemon API]

• get_app() [AppDaemon API]

• get_app_pin() [AppDaemon API]

• get_callback_entries() [AppDaemon API]

• get_dialogflow_intent() [AppDaemon API]

• get_dialogflow_slot_value() [AppDaemon API]

• get_error_log() [AppDaemon API]

266 Chapter 19. Index

DASHBOARD_CREATION.html#cover
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.dash_navigate
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.date
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.datetime
APPGUIDE.html#days
DASHBOARD_CREATION.html#device-tracker
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.entity_exists
DASHBOARD_CREATION.html#entitypicture
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.error
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.everyone_home
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.fire_event
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.format_alexa_response
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.format_dialogflow_response
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.friendly_name
DASHBOARD_CREATION.html#gauge
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_ad_version
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_alexa_error
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_alexa_intent
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_alexa_slot_value
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_app
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_app_pin
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_callback_entries
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_dialogflow_intent
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_dialogflow_slot_value
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_error_log

AppDaemon Documentation, Release 4.0.7

• get_history() [Hass API]

• get_main_log() [AppDaemon API]

• get_namespace() [AppDaemon API]

• get_now() [AppDaemon API]

• get_now_ts() [AppDaemon API]

• get_pin_thread() [AppDaemon API]

• get_plugin_config() [AppDaemon API]

• get_scheduler_entries() [AppDaemon API]

• get_state() [AppDaemon API]

• get_thread_info() [AppDaemon API]

• get_timezone() [AppDaemon API]

• get_tracker_details() [Hass API]

• get_tracker_state() [Hass API]

• get_trackers() [Hass API]

• get_tz_offset() [AppDaemon API]

• get_user_log() [AppDaemon API]

• group [Widget]

19.8 H

19.9 I

• icon [Widget]

• iframe [Widget]

• info_listen_event() [AppDaemon API]

• info_listen_state() [AppDaemon API]

• info_timer() [AppDaemon API]

• input_boolean [Constraints]

• input_boolean [Widget]

• input_number [Widget]

• input_select [Constraints]

• input_select [Widget]

• input_slider [Widget]

• is_client_connected() [Mqtt API]

19.8. H 267

HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.get_history
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_main_log
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_namespace
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_now
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_now_ts
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_pin_thread
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_plugin_config
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_scheduler_entries
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_state
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_thread_info
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_timezone
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.get_tracker_details
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.get_tracker_state
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.get_trackers
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_tz_offset
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.get_user_log
DASHBOARD_CREATION.html#group
DASHBOARD_CREATION.html#icon
DASHBOARD_CREATION.html#iframe
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.info_listen_event
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.info_listen_state
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.info_timer
APPGUIDE.html#input-boolean
DASHBOARD_CREATION.html#input-boolean
DASHBOARD_CREATION.html#input-number
APPGUIDE.html#input-select
DASHBOARD_CREATION.html#input-select
DASHBOARD_CREATION.html#input-slider
MQTT_API_REFERENCE.html#appdaemon.plugins.mqtt.mqttapi.Mqtt.is_client_connected

AppDaemon Documentation, Release 4.0.7

19.10 J

• javascript [Widget]

19.11 K

19.12 L

• label [Widget]

• light [Widget]

• list_namespaces() [AppDaemon API]

• list_services() [AppDaemon API]

• listen_event() [AppDaemon API]

• listen_event() [Mqtt API]

• listen_log() [AppDaemon API]

• listen_state() [AppDaemon API]

• lock [Widget]

• log() [AppDaemon API]

• london_underground [Widget]

19.13 M

• media_player [Widget]

• mode [Widget]

• mqtt_publish() [Mqtt API]

• mqtt_subscribe() [Mqtt API]

• mqtt_unsubscribe() [Mqtt API]

19.14 N

• navigate [Widget]

• noone_home() [Hass API]

• notify() [Hass API]

• now_is_between() [AppDaemon API]

268 Chapter 19. Index

DASHBOARD_CREATION.html#javascript
DASHBOARD_CREATION.html#label
DASHBOARD_CREATION.html#light
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.list_namespaces
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.list_services
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.listen_event
MQTT_API_REFERENCE.html#appdaemon.plugins.mqtt.mqttapi.Mqtt.listen_event
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.listen_log
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.listen_state
DASHBOARD_CREATION.html#lock
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.log
DASHBOARD_CREATION.html#london-underground
DASHBOARD_CREATION.html#media-player
DASHBOARD_CREATION.html#mode
MQTT_API_REFERENCE.html#appdaemon.plugins.mqtt.mqttapi.Mqtt.mqtt_publish
MQTT_API_REFERENCE.html#appdaemon.plugins.mqtt.mqttapi.Mqtt.mqtt_subscribe
MQTT_API_REFERENCE.html#appdaemon.plugins.mqtt.mqttapi.Mqtt.mqtt_unsubscribe
DASHBOARD_CREATION.html#navigate
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.noone_home
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.notify
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.now_is_between

AppDaemon Documentation, Release 4.0.7

19.15 O

19.16 P

• parse_datetime() [AppDaemon API]

• parse_time() [AppDaemon API]

• parse_utc_string() [AppDaemon API]

• person [Widget]

• presence [Constraints]

19.17 Q

19.18 R

• radial [Widget]

• register_endpoint() [AppDaemon API]

• register_route() [AppDaemon API]

• register_service() [AppDaemon API]

• reload [Widget]

• reload_apps() [AppDaemon API]

• remove_entity() [AppDaemon API]

• restart_app() [AppDaemon API]

• rss [Widget]

• run_at() [AppDaemon API]

• run_at_sunrise() [AppDaemon API]

• run_at_sunset() [AppDaemon API]

• run_daily() [AppDaemon API]

• run_every() [AppDaemon API]

• run_hourly() [AppDaemon API]

• run_in() [AppDaemon API]

• run_in_executor() [AppDaemon API]

• run_in_thread() [AppDaemon API]

• run_minutely() [AppDaemon API]

• run_once() [AppDaemon API]

19.15. O 269

AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.parse_datetime
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.parse_time
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.parse_utc_string
DASHBOARD_CREATION.html#person
APPGUIDE.html#presence
DASHBOARD_CREATION.html#radial
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.register_endpoint
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.register_route
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.register_service
DASHBOARD_CREATION.html#reload
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.reload_apps
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.remove_entity
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.restart_app
DASHBOARD_CREATION.html#rss
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_at
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_at_sunrise
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_at_sunset
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_daily
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_every
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_hourly
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_in
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_in_executor
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_in_thread
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_minutely
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.run_once

AppDaemon Documentation, Release 4.0.7

19.19 S

• save_namespace() [AppDaemon API]

• scene [Widget]

• script [Widget]

• select_option() [Hass API]

• sensor [Widget]

• set_app_pin() [AppDaemon API]

• set_error_level() [AppDaemon API]

• set_log_level() [AppDaemon API]

• set_namespace() [AppDaemon API]

• set_pin_thread() [AppDaemon API]

• set_production_mode() [AppDaemon API]

• set_state() [AppDaemon API]

• set_textvalue() [Hass API]

• set_value() [Hass API]

• split_device_list() [AppDaemon API]

• split_entity() [AppDaemon API]

• start_app() [AppDaemon API]

• stop_app() [AppDaemon API]

• submit_to_executor() [AppDaemon API]

• sun_down() [AppDaemon API]

• sun_up() [AppDaemon API]

• sunrise() [AppDaemon API]

• sunset() [AppDaemon API]

• switch [Widget]

19.20 T

• temperature [Widget]

• time [Constraints]

• time() [AppDaemon API]

• toggle() [Hass API]

• turn_off() [Hass API]

• turn_on() [Hass API]

270 Chapter 19. Index

AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.save_namespace
DASHBOARD_CREATION.html#scene
DASHBOARD_CREATION.html#script
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.select_option
DASHBOARD_CREATION.html#sensor
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.set_app_pin
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.set_error_level
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.set_log_level
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.set_namespace
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.set_pin_thread
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.set_production_mode
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.set_state
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.set_textvalue
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.set_value
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.split_device_list
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.split_entity
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.start_app
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.stop_app
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.submit_to_executor
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.sun_down
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.sun_up
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.sunrise
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.sunset
DASHBOARD_CREATION.html#switch
DASHBOARD_CREATION.html#temperature
APPGUIDE.html#time
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.time
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.toggle
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.turn_off
HASS_API_REFERENCE.html#appdaemon.plugins.hass.hassapi.Hass.turn_on

AppDaemon Documentation, Release 4.0.7

19.21 U

• unregister_endpoint() [AppDaemon API]

• unregister_route() [AppDaemon API]

19.22 V

19.23 W

• weather [Widget]

• weather_summary [Widget]

19.24 X

19.25 Y

19.26 Z

19.21. U 271

AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.unregister_endpoint
AD_API_REFERENCE.html#appdaemon.adapi.ADAPI.unregister_route
DASHBOARD_CREATION.html#weather
DASHBOARD_CREATION.html#weather-summary

AppDaemon Documentation, Release 4.0.7

272 Chapter 19. Index

Python Module Index

a
appdaemon.admin, 223
appdaemon.admin_loop, 223
appdaemon.app_management, 223
appdaemon.appdaemon, 223
appdaemon.callbacks, 223
appdaemon.dashboard, 223
appdaemon.events, 223
appdaemon.logging, 225
appdaemon.plugin_management, 225
appdaemon.scheduler, 225
appdaemon.services, 226
appdaemon.state, 226
appdaemon.stream, 226
appdaemon.thread_async, 226
appdaemon.threading, 226
appdaemon.utility_loop, 226
appdaemon.utils, 226

273

AppDaemon Documentation, Release 4.0.7

274 Python Module Index

Index

A
add_event_callback() (Events method), 223
anyone_home() (in module appdae-

mon.plugins.hass.hassapi.Hass), 132
appdaemon.admin (module), 223
appdaemon.admin_loop (module), 223
appdaemon.app_management (module), 223
appdaemon.appdaemon (module), 223
appdaemon.callbacks (module), 223
appdaemon.dashboard (module), 223
appdaemon.events (module), 223
appdaemon.logging (module), 225
appdaemon.plugin_management (module), 225
appdaemon.scheduler (module), 225
appdaemon.services (module), 226
appdaemon.state (module), 226
appdaemon.stream (module), 226
appdaemon.thread_async (module), 226
appdaemon.threading (module), 226
appdaemon.utility_loop (module), 226
appdaemon.utils (module), 226
AppNameFormatter (class in appdaemon.logging),

225
AttrDict (class in appdaemon.utils), 226

C
call_service() (in module appdae-

mon.adapi.ADAPI), 104
cancel_event_callback() (Events method), 224
cancel_listen_event() (in module appdae-

mon.adapi.ADAPI), 107
cancel_listen_log() (in module appdae-

mon.adapi.ADAPI), 110
cancel_listen_state() (in module appdae-

mon.adapi.ADAPI), 90
cancel_sequence() (in module appdae-

mon.adapi.ADAPI), 105
cancel_timer() (in module appdae-

mon.adapi.ADAPI), 95

convert_utc() (in module appdae-
mon.adapi.ADAPI), 90

create_task() (in module appdae-
mon.adapi.ADAPI), 116

D
dash_navigate() (in module appdae-

mon.adapi.ADAPI), 111
date() (in module appdaemon.adapi.ADAPI), 94
datetime() (in module appdaemon.adapi.ADAPI), 94
depends_on_module() (in module appdae-

mon.adapi.ADAPI), 125
DuplicateFilter (class in appdaemon.logging), 225

E
emit() (LogSubscriptionHandler method), 225
entity_exists() (in module appdae-

mon.adapi.ADAPI), 117
error() (in module appdaemon.adapi.ADAPI), 108
Events (class in appdaemon.events), 223
everyone_home() (in module appdae-

mon.plugins.hass.hassapi.Hass), 132

F
filter() (DuplicateFilter method), 225
fire_event() (Events method), 224
fire_event() (in module appdaemon.adapi.ADAPI),

107
format() (AppNameFormatter method), 225
format_alexa_response() (in module appdae-

mon.adapi.ADAPI), 122
format_dialogflow_response() (in module ap-

pdaemon.adapi.ADAPI), 121
friendly_name() (in module appdae-

mon.adapi.ADAPI), 119
from_nested_dict() (AttrDict static method), 226

G
get_ad_version() (in module appdae-

mon.adapi.ADAPI), 117

275

AppDaemon Documentation, Release 4.0.7

get_alexa_error() (in module appdae-
mon.adapi.ADAPI), 122

get_alexa_intent() (in module appdae-
mon.adapi.ADAPI), 122

get_alexa_slot_value() (in module appdae-
mon.adapi.ADAPI), 122

get_app() (in module appdaemon.adapi.ADAPI), 117
get_app_pin() (in module appdae-

mon.adapi.ADAPI), 115
get_callback_entries() (in module appdae-

mon.adapi.ADAPI), 125
get_dialogflow_intent() (in module appdae-

mon.adapi.ADAPI), 121
get_dialogflow_slot_value() (in module app-

daemon.adapi.ADAPI), 121
get_error_log() (in module appdae-

mon.adapi.ADAPI), 110
get_history() (in module appdae-

mon.plugins.hass.hassapi.Hass), 133
get_main_log() (in module appdae-

mon.adapi.ADAPI), 110
get_namespace() (in module appdae-

mon.adapi.ADAPI), 112
get_now() (in module appdaemon.adapi.ADAPI), 92
get_now_ts() (in module appdaemon.adapi.ADAPI),

93
get_pin_thread() (in module appdae-

mon.adapi.ADAPI), 115
get_plugin_config() (in module appdae-

mon.adapi.ADAPI), 119
get_scheduler_entries() (in module appdae-

mon.adapi.ADAPI), 125
get_state() (in module appdaemon.adapi.ADAPI),

86
get_thread_info() (in module appdae-

mon.adapi.ADAPI), 125
get_timezone() (in module appdae-

mon.adapi.ADAPI), 94
get_tracker_details() (in module appdae-

mon.plugins.hass.hassapi.Hass), 131
get_tracker_state() (in module appdae-

mon.plugins.hass.hassapi.Hass), 131
get_trackers() (in module appdae-

mon.plugins.hass.hassapi.Hass), 130
get_tz_offset() (in module appdae-

mon.adapi.ADAPI), 90
get_user_log() (in module appdae-

mon.adapi.ADAPI), 110

H
has_log_callback() (Events method), 225

I
info_event_callback() (Events method), 224

info_listen_event() (in module appdae-
mon.adapi.ADAPI), 107

info_listen_state() (in module appdae-
mon.adapi.ADAPI), 90

info_timer() (in module appdaemon.adapi.ADAPI),
95

is_client_connected() (in module appdae-
mon.plugins.mqtt.mqttapi.Mqtt), 137

L
list_namespaces() (in module appdae-

mon.adapi.ADAPI), 112
list_services() (in module appdae-

mon.adapi.ADAPI), 103
listen_event() (in module appdae-

mon.adapi.ADAPI), 106
listen_event() (in module appdae-

mon.plugins.mqtt.mqttapi.Mqtt), 138
listen_log() (in module appdaemon.adapi.ADAPI),

109
listen_state() (in module appdae-

mon.adapi.ADAPI), 87
log() (in module appdaemon.adapi.ADAPI), 108
LogSubscriptionHandler (class in appdae-

mon.logging), 225
loop() (Utility method), 226

M
mqtt_publish() (in module appdae-

mon.plugins.mqtt.mqttapi.Mqtt), 137
mqtt_subscribe() (in module appdae-

mon.plugins.mqtt.mqttapi.Mqtt), 136
mqtt_unsubscribe() (in module appdae-

mon.plugins.mqtt.mqttapi.Mqtt), 136

N
noone_home() (in module appdae-

mon.plugins.hass.hassapi.Hass), 132
notify() (in module appdae-

mon.plugins.hass.hassapi.Hass), 130
now_is_between() (in module appdae-

mon.adapi.ADAPI), 93

P
parse_datetime() (in module appdae-

mon.adapi.ADAPI), 92
parse_time() (in module appdaemon.adapi.ADAPI),

91
parse_utc_string() (in module appdae-

mon.adapi.ADAPI), 90
PersistentDict (class in appdaemon.utils), 226
PluginBase (class in appdae-

mon.plugin_management), 225

276 Index

AppDaemon Documentation, Release 4.0.7

process_event() (Events method), 224
process_event_callbacks() (Events method),

224

R
register_endpoint() (in module appdae-

mon.adapi.ADAPI), 123
register_route() (in module appdae-

mon.adapi.ADAPI), 123
register_service() (in module appdae-

mon.adapi.ADAPI), 103
reload_apps() (in module appdae-

mon.adapi.ADAPI), 121
remove_entity() (in module appdae-

mon.adapi.ADAPI), 118
render_template() (in module appdae-

mon.plugins.hass.hassapi.Hass), 130
restart_app() (in module appdae-

mon.adapi.ADAPI), 120
run_at() (in module appdaemon.adapi.ADAPI), 97
run_at_sunrise() (in module appdae-

mon.adapi.ADAPI), 102
run_at_sunset() (in module appdae-

mon.adapi.ADAPI), 101
run_daily() (in module appdaemon.adapi.ADAPI),

98
run_every() (in module appdaemon.adapi.ADAPI),

100
run_hourly() (in module appdaemon.adapi.ADAPI),

99
run_in() (in module appdaemon.adapi.ADAPI), 95
run_in_executor() (in module appdae-

mon.adapi.ADAPI), 116
run_in_thread() (in module appdae-

mon.adapi.ADAPI), 124
run_minutely() (in module appdae-

mon.adapi.ADAPI), 100
run_once() (in module appdaemon.adapi.ADAPI), 96
run_sequence() (in module appdae-

mon.adapi.ADAPI), 105

S
save_namespace() (in module appdae-

mon.adapi.ADAPI), 112
select_option() (in module appdae-

mon.plugins.hass.hassapi.Hass), 129
set_app_pin() (in module appdae-

mon.adapi.ADAPI), 115
set_error_level() (in module appdae-

mon.adapi.ADAPI), 111
set_log_level() (in module appdae-

mon.adapi.ADAPI), 111
set_namespace() (in module appdae-

mon.adapi.ADAPI), 112

set_pin_thread() (in module appdae-
mon.adapi.ADAPI), 115

set_production_mode() (in module appdae-
mon.adapi.ADAPI), 120

set_state() (in module appdaemon.adapi.ADAPI),
87

set_textvalue() (in module appdae-
mon.plugins.hass.hassapi.Hass), 129

set_value() (in module appdae-
mon.plugins.hass.hassapi.Hass), 128

sleep() (in module appdaemon.adapi.ADAPI), 116
split_device_list() (in module appdae-

mon.adapi.ADAPI), 119
split_entity() (in module appdae-

mon.adapi.ADAPI), 118
start_app() (in module appdaemon.adapi.ADAPI),

120
StateAttrs (class in appdaemon.utils), 226
stop() (Utility method), 226
stop_app() (in module appdaemon.adapi.ADAPI),

120
submit_to_executor() (in module appdae-

mon.adapi.ADAPI), 124
sun_down() (in module appdaemon.adapi.ADAPI), 91
sun_up() (in module appdaemon.adapi.ADAPI), 91
sunrise() (in module appdaemon.adapi.ADAPI), 93
sunset() (in module appdaemon.adapi.ADAPI), 94

T
ThreadAsync (class in appdaemon.thread_async), 226
time() (in module appdaemon.adapi.ADAPI), 94
timer_running() (in module appdae-

mon.adapi.ADAPI), 95
toggle() (in module appdae-

mon.plugins.hass.hassapi.Hass), 128
turn_off() (in module appdae-

mon.plugins.hass.hassapi.Hass), 128
turn_on() (in module appdae-

mon.plugins.hass.hassapi.Hass), 127

U
unregister_endpoint() (in module appdae-

mon.adapi.ADAPI), 123
unregister_route() (in module appdae-

mon.adapi.ADAPI), 124
update() (PersistentDict method), 226
Utility (class in appdaemon.utility_loop), 226

W
write_to_file() (in module appdaemon.utils), 226

Index 277

	Installation
	Configuration
	Example Apps
	AppDaemon Tutorial for HASS Users
	AppDaemon with Docker
	Writing AppDaemon Apps
	Community Tutorials
	AppDaemon API Reference
	HASS API Reference
	MQTT API Reference
	Dashboard Install and Configuration
	Dashboard Creation
	HADashboard Widget Development
	Development
	Internal Documentation
	Upgrading from 3.x
	Upgrading from 2.x
	Change Log
	Index
	Python Module Index
	Index

